摘要
针对焊装车间的装配工艺过程的复杂性以及白车身在线监测异常模式的多样性,为了更全面更有效地监控白车身的质量状态,根据实际测量数据提出了方差异常模式的仿真函数构造方法,并提取方差异常模式的统计特征和形状特征,采用MATLAB数学软件建立三层反向传播BP神经网络对生产过程中的7种常见异常模式进行识别,并利用生产线实际测量数据进行验证。结果表明,建立的异常模式监测模型可行,并具有较高的准确性,能够有效代替人工识别。
According to the complexity of the welding assembly process and the diversity anomaly pattern of Body in White Online Detection,In order to monitor quality status of BIW more comprehensively and effectively,A simulation function of variance anomaly pattern is constructed according to the online data,extract statistical features and shape features of anomaly patterns and a three-layer Back-Propagation(BP)Neural Network is built with MATLAB to identify seven anomaly pattern in the production process and validate with actual online measurement data.The results show that the monitoring model is feasible and accuracy,which can be applied to replace the manual identification.
作者
屈原
何金蓉
秦成辉
刘畅辉
金隼
QU Yuan;HE Jin-rong;QIN Cheng-hui;LIU Chang-hui;JIN Sun(Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,Shanghai Jiao Tong University,Shanghai 200240,China;SAIC-GM-Wuling Automobile Co.,Ltd.,Liuzhou Guangxi 545007,China)
出处
《组合机床与自动化加工技术》
北大核心
2018年第12期66-69,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
博士后科学基金面上资助项目:不平衡数据条件下发动机缸盖燃烧室容积误差源诊断方法资助(BR0200122)
关键词
白车身
在线监测
波动
神经网络
body in white
online detection
variation
neutral network