摘要
热误差对机床的加工精度影响很大,高性能的补偿系统依赖于多传感器融合建立的三维模型的精度、鲁棒性和合适的温度进行反馈输入。使用温度与位移传感器的模糊聚类进行温度分类,基于评价模型比对分析最优的温度分类,从每个分类中选择具有代表性温度作为候选温度。归纳试验数据,使用分段逆回归SIR模型进行热误差建模,SIR模型将高维前移回归问题转化为多个一维的回归问题,并且进一步消除了候选温度之间的耦合。热误差试验表明,SIR模型具有泛化能力强、预测精度高及鲁棒性好的特点,能够准确地描述多种典型工况条件下的实际热误差特性。
Thermal error significantly influences the accuracy of CNC machine tool.A high-performance compensation system depends upon the accuracy and robustness of the model and appropriate model inputs of temperatures.In this paper,fuzzy clustering is conducted in temperature classification.Based upon an evaluation model,an optimal temperature classification can be found.The representative temperatures from each group construct temperature candidates.Then,a sliced inverse regression(SIR)model is introduced in thermal error modeling,which can change the problem of high-dimensional forward regression into several one-dimensional regression and meanwhile further eliminate the coupling among temperatures candidates.A series of experiments for thermal error modeling verify the validity of this method.SIR model has good generalization ability,accurate prediction and robustness,so it can describe the actual thermal error characteristics more accurately under multiple work conditions.
作者
王胜
余文利
姚鑫骅
WANG Sheng;YU Wenli;YAO Xinhua(Mechanical and Electrical Engineering Institute,Quzhou College of Technology,Quzhou 324000,China;School of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2018年第12期1869-1875,共7页
Chinese Journal of Sensors and Actuators
基金
国家自然科学基金面上项目(51475421)
浙江省教育科学规划研究课题成果项目(2018SCG138)
衢州职业技术学院科研项目研究成果项目(QZYY1626)
关键词
热误差
模糊聚类
分段逆回归
机床传感器
误差补偿
thermal error
fuzzy clustering
sliced inverse regression
machine tool sensor
error compensation