期刊文献+

多参数数显仪表的自动识别方法研究 被引量:6

Automatic recognition method for the digital display instrument with multi-parameters
下载PDF
导出
摘要 为提高数显仪表的识别精度和速度,提出一种针对多参数数显仪表的自动识别方法,并以电焊机的电流和电压作为算法验证。对于数显表显示的字符3和7,由于这两个字符的宽度原因,传统的穿线法会导致较高的错误识别率,因此提出一种用倾斜直线代替传统的竖直直线的改进方法。由于数显仪表的字符颜色种类繁多,利用V通道(HSV色彩空间)特征解决各种颜色数显的识别,并且减少计算量、提高定位精度。通过分析字符的特征,利用字符右侧边界的高度信息快速确定小数点位。实验结果表明该算法能够以较高精度实时识别电焊机上的多参数字符和小数点。静态识别率为99%,平均识别时间7.2 ms/张,相机动态识别率为98.4%,平均识别时间为8.5 ms/张。 A novel recognition method for the digital display instrument with multi-parameters was proposed to improve the recognition accuracy and speed in this paper.This paper mainly suggested algorithm for recognition of the current and voltage which were presented on electric welding machine.As for character‘3’and‘7’of the studied object,the traditional crossing method leaded to false recognition because of the character width.Therefore the slanted straight line was proposed to replace the original vertical line in the paper.Because of the various types of character color of the digital display instrument,value channel(HSV color space)was extracted to solve all sorts of color digital display and reduce computational cost and improve location precision.Decimal point was detected by acquiring the height information at the right edge of the character.The experimental results show that the character and decimal point can be recognized by high recognition accuracy and high real-time performance for digital display instrument which have multiparameters.The accuracy of the algorithm method for static test and dynamic test is99%and98.4%respectively;their average time is7.2ms and8.5ms per image respectively.
作者 曾科 高潮 扶新 郭永彩 秦琨 王攀峰 ZENG Ke;GAO Chao;FU Xin;GUO Yongcai;QIN Kun;WANG Panfeng(Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education,Chongqing University,Chongqing400044,China;Centre of Measurement Test,Chongqing Chang'an Industry(Group)Co.,Ltd.,Chongqing400023,China)
出处 《中国测试》 CAS 北大核心 2018年第12期122-128,共7页 China Measurement & Test
基金 国防工业计量研究项目(JSJL2015209B001)
关键词 字符识别 图像处理 特征提取 图像分割 小数点识别 character recognition image preprocessing feature extraction image segmentation decimal point recognition
  • 相关文献

参考文献3

二级参考文献13

  • 1周赟,李久贤,夏良正.基于区域生长的红外图像分割[J].南京理工大学学报,2002,26(S1):75-78. 被引量:17
  • 2唐轶峻,申小阳,朱雯兰,隋成华.基于BP神经网络的数显仪表数字字符识别系统[J].电测与仪表,2005,42(9):42-45. 被引量:21
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 4RICA N,YANMAN-VURAL F T. An Overview of Character Recognition Focused on Off-line Handwriting[J]. IEEE Trans on systems, man, and cyberneticpart C: Applications and Reviews.2001,31(2): 216-233.
  • 5HOMIK IC Approximation Capabilities of Muhilayer Feedforward Network[J]. Neural Networks,1997,4(2): 251-257.
  • 6RODRIGUEZ F Martin, HERMIDA X.F. New Advances in Automatic Reading of VLP's,Proc. SPC-2000(IASTED), Marbella. Spain,2000, 126-131.
  • 7章毓晋.图像分割[M].北京:科学出版社,2001..
  • 8RAHMAN A F R, FAIRHURST M C. Machine-printed character recognition revisited: reapplication of recent advances in handwritten character recognition research. Image and Vision Compution, 1998 (16): 819-842.
  • 9蔡良伟,韩大庆.工程图纸中字符的分离和识别[J].深圳大学学报(理工版),1997,14(4):19-24. 被引量:2
  • 10李晓东,李志强,雷晓平,丁伟雄.彩色数字仪表图像二值化技术研究[J].计算机技术与发展,2010,20(4):120-123. 被引量:7

共引文献52

同被引文献40

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部