期刊文献+

基于YOLO与改进的DLIB多角度遮挡人脸判别方法 被引量:5

Multi-angle Masked Face Discrimination Based on YOLO and Improved DLIB
下载PDF
导出
摘要 针对ATM机上违法犯罪分子通过遮挡面部进行犯罪活动进而无法追踪的问题,提出了一种基于YOLO与改进的DLIB多角度遮挡人脸判别方法。通过将基于YOLO模型的多目标检测改成单一人脸检测,并调整其损失函数中人脸置信度损失计算方式,提高了人脸定位的准确性与时效性,完成了从原始图像的输入到任意人脸位置的回归,再结合改进的DLIB多角度人脸68个关键点检测算法在回归出的人脸位置上进行遮挡判别的新方法。测试结果验证了新方法优于传统方法,能够有效并快速地判别出各类遮挡,实现了ATM机上遮挡人脸判别的实时性与鲁棒性,具有较高的应用价值。 Aiming at the problem that the criminal criminals on the ATM machine can’t trace the criminal activity by covering the face,multi-angle masked face discrimination based on YOLO and improved DLIB is proposed.This paper proposes a new method of occlusion identification based on changing the multi-objective detection based on YOLO model into single face detection and adjusting the calculation method of face confidence loss in the loss function,the accuracy and timeliness of face positioning are improved,and completed from the original image input to any face position regression combined with68key point detection algorithms of modified multi-angle face in DLIB.The test results verify that the new method is superior to the traditional method,which can effectively and quickly identify all kinds of occlusions,and realizes the real-time and robustness of masked face discrimination on ATM machines.It has high application value.
作者 呙红娟 石跃祥 成洁 GUO Hong-juan;SHI Yue-xiang;CHEN Jie(School of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China;LED Lighting Research & Technology Center of Guizhou,Tongren,Guizhou 554300,China)
出处 《计算技术与自动化》 2018年第4期83-89,共7页 Computing Technology and Automation
基金 国家自然科学基金资助项目(61602397 61502407) 湖南省高校创新平台开放基金资助项目(15K130) 湖南省教育厅科学研究项目(15C1325)
关键词 卷积神经网络 YOLO人脸检测模型 DLIB人脸关键点检测 遮挡人脸判别 convolution neural network YOLO face detection model DLIB face key point detection masked face discrimination
  • 相关文献

参考文献1

二级参考文献14

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献609

同被引文献44

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部