期刊文献+

环R_(k,m)上的线性码及其MacWilliams恒等式

Linear Codes and Their MacWilliams Identity Over the Ring R_(k,m)
下载PDF
导出
摘要 研究了环R_(k,m)=Fq[u,v]/〈uk,vm,uv-vu〉上的线性码及其MacWilliams恒等式,其中q是素数p的方幂且k≥m≥1.首先给出了R_(k,m)到Fkmq的Gray映射,此映射关于Lee重量具有保距性和保对偶性,然后证明了环R_(k,m)上线性码相应重量计数多项式的MacWilliams恒等式,特别地给出了环R_(k,m)上线性码关于Lee重量计数多项式的MacWilliams恒等式. We study linear codes and their MacWilliams identity over the ring R k,m=F q[u,v]/〈u k,v m,uv-vu〉,which q is a power of the prime p and k and m are both positive integers.First we define the Lee weights of the elements on R k,m and introduce a distance and duality preserving Gray map from R k,m to F km q together with the Lee weight.Then we give the MacWilliams identities for codes over R k,m for all the relevant weight enumerators.Especially,the MacWilliams identities between linear codes and their dual over R k,m with respect to Lee weight enumerator are obtained.
作者 王艳 WANG Yan(Anqing Vocational and Technical College,Anqing Anhui 246003,China)
出处 《大学数学》 2018年第6期9-14,共6页 College Mathematics
基金 2015年安徽省教育厅科研项目(2015jyxm539) 2016年安徽省自然科研项目(KJ2016A447)
关键词 线性码 GRAY映射 Lee重量计数器 MACWILLIAMS恒等式 Linear codes Gray map Lee weight enumerator MacWilliams identity
  • 相关文献

参考文献3

二级参考文献19

  • 1王冬银,朱士信.F_2+uF_2上长度为2n(n为奇数)的循环码个数[J].合肥工业大学学报(自然科学版),2006,29(11):1470-1472. 被引量:4
  • 2李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 3Masaaki H,Michio O,Kenichiro T.On the covering radius of ternary extremal self-dual codes[J].Designs,Codes and Crytography,2004,33(2):149-158.
  • 4Gerzson K,Patric R.J.O.Further results on the covering radius of small codes[J].Discrete Mathematics,2007,307(26):69-77.
  • 5Gerzson K.The covering radius of extreme binary 2-surjective codes[J].Designs,Codes and Crytography,2008,46(2):191-198.
  • 6Aoki T,Gaborit P,Harada M,et al.On the covering radius of Z4-codes and their lattices[J].IEEE Trans Inform Theory,1999,45(6):2162-2168.
  • 7Zhu Shi-xin,Wang Yu,Shi Min-jia.Some results on cyclic codes over F2+vF2[J],IEEE Trans Inform Theory,2010,56:1680-1684.
  • 8Qian Jian-fa.Quantum codes from cyclic codes over F2+vF2[J].Journal of Information and Computational Science,2013,10(6):1715-1722.
  • 9Dougherty S T,Gaborit P,.Harada M and Sole P.Type IV self-codes over rings[J].IEEE Trans Inform Theory,1999,45(7):2345-2360.
  • 10Delsarte P.Four fundamental parameters of a code and their combinatorial significance[J].Inform Contr,1973,23(2):407-438.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部