摘要
利用方向导数,推导了n元函数的微分中值定理,并通过一定的分析,从形式和内蕴上探究了它与一元函数的微分中值定理的统一性,从而由直观和本质上对n元函数的微分中值定理有了全新的认知和更深刻的理解.
By using the directional derivative,we prove the differential mean value theorem to the function of n-variables,including Fermat′s lemma,Rolle′s theorem,Lagrange′s mean value theorem and Cauchy′s mean value theorem.We analyze the form and intrinsic unity of the differential mean value theorem to the function of one variable and the function of n-variables.Thus,for the differential mean value theorem to the function of n-variables,we have a brand-new cognition and deeper understanding.
作者
杨凤
孙庆有
YANG Feng;SUN Qing-You(Department of Mathematics,Hangzhou Normal University,Hangzhou 311121,China)
出处
《大学数学》
2018年第6期112-117,共6页
College Mathematics
基金
杭州师范大学MOOC/SPOC课程建设项目:<数学分析I>(4085F5121632414)
关键词
N元函数
方向导数
微分中值定理
形式与内蕴统一
functions of n-variables
directional derivative
differential mean value theorem
form and intrinsic unity