期刊文献+

一类分数阶奇异脉冲微分方程边值问题解的存在性研究

The Existence of Solutions for a Class of Boundary Value Problem of Singular Impulsive Fractional Differential Equation
下载PDF
导出
摘要 讨论了一类分数阶奇异脉冲微分方程边值问题解的存在性,利用格林函数的性质,应用Arzela-Ascoli定理给出了解存在的充分条件,同时给出了一个例子来说明主要结果. In this paper,we investigate the existence of solutions for a class of boundary value problem of singu.lar impulsive fractional differential equation.By using the properties of the Green function,the sufficient conditionsfor the existence of the solution are given by using the Arzela-Ascoli theorem.One example in given to explain themain result.
作者 仝荣 胡卫敏 TONG Rong;HU Wei-min(College of Mathematics and Statistics,Yili Normal University, Yining, Xinjiang 835000, China)
出处 《伊犁师范学院学报(自然科学版)》 2018年第4期1-7,共7页 Journal of Yili Normal University:Natural Science Edition
基金 伊犁师范学院研究生科研创新项目(YLSF2017030)
关键词 分数阶微分方程 脉冲 奇异性 边值问题 Fractional differential equation Impulse Singularity Boundary value problem
  • 相关文献

参考文献6

二级参考文献45

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2Agarwal R P, O'Regan D. Multiple nonnegative solut- ions for second order impulsive differential equations[ J ]. Appl. Math. Comput. , 2000, 114(1): 51-59.
  • 3Agarwal R P, O' Regan D. A Multiplicity results for sec- ond order impulsive differential equations via the Leggett Williams fixed point theorem [J]. Appl. Math. Corn- put., 2005, 161(2): 433-439.
  • 4Erbe L H, Liu Xinzhi. Existence results for boundary value problems of second order impulsive differential equations[Jl. J. Math. Anal. Appl., 1990, 149(1): 56-69.
  • 5Guo Dajun. Existence of boundary value problems for nonlinear second order impulsive differential equations in Banachspaces[J]. J. Math. Anal. Appl., 1994, 181 (2) : 407-421.
  • 6Cabada A, Nieto J. A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points[J]. Dyn. Contin. Discrete Impuls. Syst. , 2000, 7: 145-158.
  • 7Lee E K, Lee Y H. Multiple positive solutions of singular two point boundary value problems for second order im- pulsive differential equations[J]. Appl. Math. Comput. , 2004, 158- 745-759.
  • 8Ding Wei, Han Maoan, Mi Junrong. Periodic boundary value problem for the second-order impulsive functional differential equations[J]. Comput. Math. Appl., 2005, 50 : 491-507.
  • 9Lin Xiaoning, Jiang Daqing. Multiple positive solutions of Dirichlet boundary value problems for second order impul- sive differential equations [J]. J. Math. Anal. Appl., 2006, 321: 501-514.
  • 10Chen Lijing, Sun Jitao. Boundary value problem of sec- ond order impulsive functional differential equations [J ]. J. Math. Anal. Appl., 2006, 323: 708-720.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部