摘要
提出一种集合经验模态分解、随机森林和极端学习机建模的短期风速预测方法。首先,引入集合经验模态分解将原始风速数据分解成代表不同波动特征的分量,剔除不规则的分量;然后,对保留分量逐一建模,构建随机森林特征选择算法,根据重要性来提取模型的特征输入;最后,建立基于特征选择和极端学习机的风速分量预测模型进行预测,综合分量预测结果得出最终预测结果。
This paper proposes a hybrid model for short-term wind speed forecasting using ensemble empirical mode decomposition(EEMD),random forest(RF)and extreme learning machine(ELM).Firstly,EEMD is introduced to decompose the original wind speed signal into several sub-series,representing different fluctuation information.Sub-series which represents irregular fluctuation is eliminated before modeling.Then each sub-series is modeled by using ELM with feature selection respectively.RF is adopted to select the inputs according to the importance of each feature.Finally,the forecasting results of the each sub-series are summed to obtain the predicted values of wind speeds.A case study is carried out to verify the validity of the proposed model.
作者
冯义
刘慧文
张宝平
张宝栋
阮亮
FENG Yi;LIU Huiwen;ZHANG Baoping;ZHANG Baodong;RUAN Liang(State Grid Electric Vehicle Service Co.,Ltd., Beijing 100000, China;State Grid Jinan Power Supply Company, Jinan 250012, China;School of Economics and Management, North China Electric Power University, Beijing 102206, China)
出处
《智慧电力》
北大核心
2018年第12期30-37,共8页
Smart Power
基金
国家社会科学基金重大项目(15ZDB165)~~
关键词
集合经验模态分解
随机森林
特征选择
极端学习机
短期风速预测
ensemble empirical mode decomposition
random forest
feature selection
extreme learning machine
short-term wind speed forecasting