期刊文献+

基于集合经验模态分解和特征选择极端学习机的风速预测 被引量:6

Short-term Wind Speed Forecasting Using Ensemble Empirical Mode Decomposition and Extreme Learning Machine with Feature Selection
下载PDF
导出
摘要 提出一种集合经验模态分解、随机森林和极端学习机建模的短期风速预测方法。首先,引入集合经验模态分解将原始风速数据分解成代表不同波动特征的分量,剔除不规则的分量;然后,对保留分量逐一建模,构建随机森林特征选择算法,根据重要性来提取模型的特征输入;最后,建立基于特征选择和极端学习机的风速分量预测模型进行预测,综合分量预测结果得出最终预测结果。 This paper proposes a hybrid model for short-term wind speed forecasting using ensemble empirical mode decomposition(EEMD),random forest(RF)and extreme learning machine(ELM).Firstly,EEMD is introduced to decompose the original wind speed signal into several sub-series,representing different fluctuation information.Sub-series which represents irregular fluctuation is eliminated before modeling.Then each sub-series is modeled by using ELM with feature selection respectively.RF is adopted to select the inputs according to the importance of each feature.Finally,the forecasting results of the each sub-series are summed to obtain the predicted values of wind speeds.A case study is carried out to verify the validity of the proposed model.
作者 冯义 刘慧文 张宝平 张宝栋 阮亮 FENG Yi;LIU Huiwen;ZHANG Baoping;ZHANG Baodong;RUAN Liang(State Grid Electric Vehicle Service Co.,Ltd., Beijing 100000, China;State Grid Jinan Power Supply Company, Jinan 250012, China;School of Economics and Management, North China Electric Power University, Beijing 102206, China)
出处 《智慧电力》 北大核心 2018年第12期30-37,共8页 Smart Power
基金 国家社会科学基金重大项目(15ZDB165)~~
关键词 集合经验模态分解 随机森林 特征选择 极端学习机 短期风速预测 ensemble empirical mode decomposition random forest feature selection extreme learning machine short-term wind speed forecasting
  • 相关文献

参考文献2

二级参考文献46

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2景小宁,李全通,南建国.B样条神经网络的算法设计及应用[J].计算机应用与软件,2005,22(7):93-96. 被引量:6
  • 3Catal~o J P S, Pousinho H M I, Mendes V M F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J]. Renewable Energy, 2011, 36(4): 1245-1251.
  • 4Liu Da, Niu Dongxiao, Wang Hui, et al. Short-term wind speed forecasting using wavelet transform and support vector machinesoptimized by genetic algorithm[J]. Renewable Energy, 2014(62): 592-597.
  • 5Hui Liu, Hongqi Tian, Difu Pan, et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks[J]. Applied Energy, 2013, 6(107): 191-208.
  • 6Skittides C, Frtila W G. Wind forecasting using principal component analysis[J]. Renewable Energy, 2014(69): 365-374.
  • 7Ch~vez-ArroyoR, Lozano-Galiana S, Sanz-RodrigoJ, etal. On the application of principal component analysis for accurate statistical- dynamical downscaling of wind fields I J]. Energy Procedia, 2013(40): 67-76.
  • 8Chen Y, Luh P B, Guan C, et al. Short-term load forecasting: similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330.
  • 9Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(2): 298-305.
  • 10Malik J, Belongie S, Leung T, et al. Contour and texture analysis for image segmentation[J]. International Journal of Computer Vision, 2001 43(1): 7-27.

共引文献43

同被引文献86

引证文献6

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部