期刊文献+

融合用户信任度和相似度的基于核心用户抽取的鲁棒性推荐算法 被引量:13

Robust Recommendation Algorithm Based on Core User Extraction with User Trust and Similarity
下载PDF
导出
摘要 推荐系统可以方便地帮助人们做出决策,然而,目前很少有研究考虑到剔除不相关噪声用户的影响,保留少量核心用户做推荐。该文提出基于信任关系和兴趣相似度的核心用户抽取的新方法。首先计算所有用户对之间的信任度和兴趣相似度并且排序,然后根据用户在最近邻列表中出现的频率和位置权重两种策略选择候选核心用户集合,最后利用用户的推荐能力筛选出最终的核心用户并且做推荐。实验表明利用核心用户做推荐的有效性,并且证明了利用20%的核心用户做推荐,可以达到超过90%的准确性,而且利用核心用户做推荐能很好地抵御托攻击对推荐系统造成的负面影响。 Recommendation systems can help people make decisions conveniently.However,few studies consider the effect of removing irrelevant noise users and retaining a small number of core users to make recommendations.A new method of core user extraction is proposed based on trust relationship and interest similarity.First,all users trust and interest similarity between pairs are calculated and sorted,then according to the frequency and position weight users travel in the nearest neighbor in the list of two kinds of strategies for the selection of candidate core collection of users.Finally,according to the user’s ability the core users are sieved out.Experimental results show that the core user recommendation effectiveness,and verify that the core of user 20%can reach more than recommended accuracy of 90%,and through the use of core user recommendation the negative effects caused by the attacks on the recommendation system can be resisted.
作者 赵明 闫寒 曹高峰 刘昕鸿 ZHAO Ming;YAN Han;CAO Gaofeng;LIU Xinhong(School of Software,Central South University,Changsha 410075,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第1期180-186,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61572526) 中南大学研究生创新项目(502211708)~~
关键词 推荐系统 核心用户 鲁棒性 相似度 信任度 Recommendation system Core users Robustness Similarity Trust
  • 相关文献

参考文献4

二级参考文献45

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2Jonna H, Albrecht S, Jani M, et al.. Context-aware mobile media and social networks. Proceedings of the llth International Conference on Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany, 2009: 1-3.
  • 3Ricci F. Mobile recommender systems. International Journal of Information Technology and Tourism, 2011, 12(3): 205-231.
  • 4Wang L C, Meng X W, Zbang Y J, et al.. New approaches to mood-based hybrid collaborative filtering. Proceedings of the Workshop on Context-Aware Movie Recommendation at the 4th ACM Conference on Recommender Systems (ACM Recsys'10), Barcelona, Spain, 2010: 28-33.
  • 5Gediminas A and Alexander T. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 152-162.
  • 6Matthias B and Gernot B. Improving the recommendation of mobile services by interpreting the user's icon arrangement. Proceedings of the llth International Conference on Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany, 2009: 15-18.
  • 7Gupta A, Kalra A, Boston D, et al.. MobiSoC: a middleware for mobile social computing applications. Mobile Networks and Applications, 2009, 14(10): 35-52.
  • 8Arazy O, Kumar N, and Shapira B. Improving social recommender systems. IT Professional, 2009, 11(4): 38-44.
  • 9Dijiang H and Vetri A. Email-based social network trust. IEEE International Conference on Social Computing /IEEE International Conference on Privacy, Security, Risk and Trust Boston. USA , 2010: 363-370.
  • 10Herlocker J, Konstan J, Terveen L, et al.. Evaluating collaborative filtering recommender systems. A CM Transactions on Information Systems, 2004, 22(1): 20-21.

共引文献84

同被引文献101

引证文献13

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部