期刊文献+

辛普森积分法在双NURBS曲线随动插补中的应用 被引量:3

Application of Simpson Integration Method in Dual-NURBS Curve Follow-up Interpolation
下载PDF
导出
摘要 提出一种精确计算插补步长的双NURBS曲线随动插补算法。首先由曲面数控加工的离散刀位数据分别拟合出刀尖点和刀轴点NURBS曲线,并建立两条曲线插补参数间的随动关系模型;然后采用辛普森积分法计算出曲线的总弧长,进行插补运动的加减速规划;再以刀尖点NURBS曲线为基准确定插补参数,采用辛普森法确定各插补周期的进给步长及插补点坐标;最后依据随动关系模型获得刀轴点NURBS曲线对应的插补参数,完成曲面加工刀路规划的刀具位姿插补。仿真实验表明,与同一参数插补法相比,参数随动法可以获得更加稳定的等距效果,便于实时控制插补过程中的刀轴位置和姿态。 A following-up interpolation algorithm for dual-NURBS(Non-uniform rational B-spline)curve was proposed based on precise calculation of interpolation step-length.First,tool-tip and tool-axis NURBS curves are fitted out from the discrete cutter location data for curved surface NC machining,respectively,and after it the follow-up relation model between the two curve interpolation parameters was established.Then,Simpson integral method is used to calculate the total arc length of the curve,and the acceleration/deceleration planning is conducted for interpolation motion.And next,taking tool-tip NURBS curve interpolation parameters as benchmark,and using Simpson method to determine feeding step-length in each interpolation cycle,and the interpolation point coordinates are subsequently gained.The corresponding interpolation parameters of the tool-axis NURBS curve is acquired according to follow-up relationship model,and the tool pose interpolation of the tool-path planning of surface machining is achieved.Simulation experiment shows that compared with the same parameter interpolation method,the follow-up parameters method can obtain more stable isometric effect,which is conducive to real-time control the tool position and posture in the process of interpolation.
作者 江本赤 王建彬 苏学满 Jiang Benchi;Wang Jianbin;Su Xueman(School of Mechanical and Automotive Engineering,Anhui Polytechnic University,Anhui Wuhu 241000,China)
出处 《机械科学与技术》 CSCD 北大核心 2019年第1期96-103,共8页 Mechanical Science and Technology for Aerospace Engineering
基金 安徽省教育厅自然科学研究重点项目(KJ2015A392) 安徽高校优秀青年人才支持计划重点项目(gxyq ZD2016465) 安徽工程大学引进人才科研启动基金项目(2016YQQ014)资助
关键词 辛普森积分 双非均匀有理B样条 参数随动 插补算法 Simpson integration dual-NURBS parameter follow-up interpolation algorithm
  • 相关文献

参考文献5

二级参考文献53

  • 1徐进,柯映林,曲巍崴.基于特征点自动识别的B样条曲线逼近技术[J].机械工程学报,2009,45(11):212-217. 被引量:19
  • 2彭芳瑜,何莹,李斌.NURBS曲线高速插补中的前瞻控制[J].计算机辅助设计与图形学学报,2006,18(5):625-629. 被引量:21
  • 3吴世雄,王成勇.散乱噪声点云的数据分割[J].机械工程学报,2007,43(2):230-233. 被引量:12
  • 4Karman T and Biot M A. Mathematical methods in engineering[M]. volume 8. McGraw-Hill New York,1940.
  • 5Brezzi F (Franco) and Fortin M. Mixed and hybrid finite element methods[M]. Springer-Verlag, 1991.
  • 6Semper B. Finite element methods for suspension bridge models[J]. Computers and Mathematics with Applications, 1993, 26(5): 77-9l.
  • 7Semper B. Finite element approximation of a fourth order integra-differential equation[J]. Applied Mathematics Letters, 1994, 7(1): 59-62.
  • 8Shidama Y. The taylor expansions[J]. Formalized Mathematics, 2004, 12(2): 195-200.
  • 9孙志忠.偏微分方程数值解法[M].科学出版社,2012.
  • 10Kusraev A G. Discrete maximum principle[J]. Mathematical Notes, 1983, 34(2): 617-620.

共引文献87

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部