期刊文献+

基于教育数据挖掘的“探索和理解”问题解决过程研究——以PISA(2012)新加坡、日本、中国上海Log数据为例 被引量:7

Log File Data Analysis of Exploration and Understanding Process——A Case Study of PISA(2012) Problem Solving Test in Singapore,Japan,and Shanghai China
下载PDF
导出
摘要 Log数据不仅包括学习时间、学习进程、鼠标和键盘敲击等静态数据,还详细呈现了从学习开始到结束的动态数据。文章截取PISA(2012)新加坡、日本、中国上海的Log数据,运用相关、滞后序列、聚类等教育数据挖掘方法分析三个国家学生在"车票"一题的"探索和理解"问题解决过程。结果发现:相比新加坡和日本,中国上海学生仍缺乏深入试题情境进行比较、探索,反映出问题解决策略不足;中国上海学生在"错误倾向组"比例过大,反映出高、低水平问题解决能力的学生呈两极分化,亟待提高低水平学生的问题解决能力。最后,文章依据研究结果在课堂教学、教育决策等方面提出了相关建议。 Log file data is not only static data that includes learning time,learning process,mouse and keyboard clicks,but also dynamic data that reflects the process of learning.Based on PISA(2012),methods of correlation,lag sequence and clustering were employed to analyze the log file on the item of TICKETS in Singapore,Japan and China.The results indicated that a)The behavioral sequences of students in Shanghai China were different from that of Singapore and Japan,reflecting a lack of strategy and method,b)Chinese students in Shanghai owned large proportion in‘error prone groups’,indicating the polarized distribution of the high and low problem-solving ability students.Finally,some suggestions were proposed at end to improve Chinese students’problem-solving performance.
作者 首新 何鹏 陈明艳 胡卫平 SHOU Xin;HE Peng;CHEN Ming-yan;HU Wei-ping(Department of Primary Education,Chongqing Normal University,Chongqing,China 400700;Department of Chemistry,Northeast Normal University,Changchun,Jilin,China 130024;Chongqing Yubei District Tianyi Primary School,Chongqing,China 401147;Key Laboratory of Modern Teaching Technology,Shaanxi Normal University,Xi’an,Shaanxi,China 710062)
出处 《现代教育技术》 CSSCI 北大核心 2018年第12期41-47,共7页 Modern Educational Technology
关键词 问题解决能力 PISA 教育数据挖掘 序列分析 problem solving performance PISA educational data mining behavioral sequence
  • 相关文献

参考文献2

二级参考文献34

  • 1任永功,于戈.数据可视化技术的研究与进展[J].计算机科学,2004,31(12):92-96. 被引量:56
  • 2彭文辉,杨宗凯,黄克斌.网络学习行为分析及其模型研究[J].中国电化教育,2006(10):31-35. 被引量:145
  • 3Siemens G, Long P. Penetrating the fog: Analytics in learning and education[JI. Educause Review, 2011,46(5): 30-32.
  • 4Agudn-Peregrina, A. F., Iglesias-Pradas, S., Conde-Gonz 6 lez, M. A., &Hern (1 ndez-Gare I a, ,~. Can we prediet success from log data in VLEs? Classification of interactions for/earning analyties and their relation with performance in VLE-supported F2F and online learning[J]. Computers in human behavior, 2014, (31): 542-550.
  • 5Mckay T., Miller K., Tritz J. What to do with actionable intelligence: E2Coach as an intervention engine [DB/OL]. http://dl.acm.org/citation. cfm?id=2330627, 2014-08-14.
  • 6Papamitsiou Z., Economides A. A. Learning analytics and educational data mining in practice: a systematic literature review of empirical evidence[J]. Educational Technology & Society, 2014, 17 (4): 49-64.
  • 7胡艺龄,顾小清,赵春.在线学习行为分析建模及挖掘[DB/0L]http://www.doc88.com/p一6992150415764.html.2015~06-03.
  • 8郁晓华,顾小清.学习活动流:一个学习分析的行为模型[DB/0L]http://www.doc88.com/p一3187112904862.html,2015~07-01.
  • 9Sackett, G. P. (Ed.). Observing Behavior: Theory and applications in mental retardation (Vol. 1)[M]. Bahimore: University Park Press, 1978.
  • 10Bakeman R. Observing interaction: An introduction to sequential analysis[M]. Cambridge: Cambridge university press, 1997.

共引文献162

同被引文献143

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部