期刊文献+

基于局部线段模式特征的城市道路视觉检测 被引量:2

Urban road vision detection based on local line pattern feature
下载PDF
导出
摘要 局部二值模式(Local Binary Pattern,LBP)特征对于局部纹理信息的提取非常精细,但对于发散的远端信息则会遗漏部分关键特征而造成检测精度降低。针对这一问题,文中提出了局部线段模式(Local Line Pattern,LLP)特征算法。首先构建城市道路数据库并将道路图像进行分块处理,然后用LLP算子提取直方图来描述局部纹理结构,并将其串联得到特征向量,最后结合BP神经网络实现城市道路可行驶路面检测。实验结果表明,LLP特征算法在检测精度上优于现今主流的各类改进型LBP算法。LLP结合"等价模式"LBP算法的实验结果显著优于"等价模式"LBP算法,在城市道路数据库中检测精度较"等价模式"LBP算法提高了4. 3%。 Local binary pattern(LBP)feature has the advantage of finely extracting local texture information.However,for missing divergence far-end information,missing key features result in low urban road detection accuracy.To solve this problem,local line pattern(LLP)feature algorithm is proposed.Firstly,the urban road database is constructed and the road image is processed in blocks.Then the histogram is extracted by the LLP operator to describe the local texture structure,then it is connected to form a series feature vector.Finally,by combining LLP feature algorithm with the BP neural network,the urban road surface detection can be achieved.Experimental results show that the LLP feature algorithm is superior to the current main-stream LBP algorithms in detection accuracy;LLP combined with uniform pattern LBP algorithm is more accurate than that of the uniform pattern LBP algorithm.Its detection accuracy in the urban road database is improved by 4.3%compared with the“Uniform Pattern”LBP algorithm.
作者 陈家华 陈雪云 阳理理 CHEN Jia-hua;CHEN Xue-yun;YANG Li-li(College of Electric Engineering,Guangxi University,Nanning 530004,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2018年第6期2206-2215,共10页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61661006)
关键词 道路检测 局部线段模式(LLP) 局部二值模式(LBP) BP神经网络 road detection local line pattern(LLP) lacal binary pattern(LBP) BP neural network
  • 相关文献

参考文献4

二级参考文献42

  • 1Dagan Erez, et al. Forward Collision Warning with a Single Camera. IEEE Symposium, Dearborn, MI, USA, October 3 5,2000.
  • 2Iteris' Lane Departure Warning System Now Available on Mercedes Trucks in Europe. The Source for Intelligent Vehicle News. IV source ,June 2000.
  • 3Pomerleau Dean, et al. Perfornmnce Specification Development for Roadway Departure Collision Avoidance Systems, Proc.of 4th World Congress oll Intelligent Transportation Systems, Berlin, Germany,Oct.21 24,1997.
  • 4Pomerleau Dean, et al. Performance Specification Development for Roadway Departure Collision Avoidance Systems Final Report, 1999.
  • 5Batavia Parag H,et al. Predicting Lane Position for Roadway Departure Prevention, Proceedings of the IEEE Intelligent Vehicles Symposium, 1EEE, October, 1998.
  • 6Batavia Parag H. Driver Adaptive Warning Systems. Tech Report CMU RI-TR-98 07. Robotics Institute. Carnegie Mellon University,March, 1998.
  • 7Massimo Bcrtozzi,et al. Artificial Vision in Road Vehicles. Proceedings of the IEEE,2002,90(7).
  • 8Chen Mei, et al. AURORA: A Vislon-Based Roadway Departure Warning System. IEEE Confermlce on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Vol, 1 ,August, 1995.
  • 9Risack R, et al. A Video based Lane Keeping Assistant, Intelligent Vehicles 2000. IEEE Symposium. Dearborn, M 1, USA, October 35,2000.
  • 10Lee,Sukhan,et al. A Vision Based Lane Departure Warning System. IEEE International Conference on Intelligent Robots and Systems,V 1,1999.

共引文献70

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部