摘要
为提高隧道衬砌裂缝的识别精度和速度,提出一种基于深度学习的隧道衬砌裂缝自动识别算法。该算法使用两个深度卷积神经网络分别实现隧道衬砌图像分类和裂缝识别。首先使用图像分类网络对隧道衬砌图像进行分类,筛选出含有裂缝的图像;然后使用裂缝识别网络,结合滑动窗口扫描的方式对含有裂缝的图像进行裂缝识别,得到初步的裂缝定位结果;最后根据初步的裂缝定位结果进行图像分割,并计算出裂缝的长度值和宽度值。实验结果表明:图像分类和裂缝识别的准确率均达到98%;处理单张不包含裂缝的大尺度图像耗时0. 008 s,处理单张包含裂缝的图像耗时0. 688 s;施工缝、线缆、字迹等对裂缝识别的影响减弱。
In order to improve the accuracy and speed of tunnel crack recognition,an automatic tunnel lining crack recognition algorithm based on deep learning is proposed.In this algorithm,two deep convolution neural networks are used to classify tunnel lining images and recognize crack damages.Firstly,the tunnel lining images are classified by image classification network,and the images with cracks are screened out.Secondly,the crack identification network is used to identify the cracks in the image with sliding window scanning,and the initial crack location results are obtained.Finally,according to the initial crack location results,the image segmentation is carried out,and the length and width of the crack are calculated.The experimental results show that the accuracy of image classification and crack recognition is 98%.It takes 0.008 s to process a single large scale image without cracks,and 0.688 s to process an image containing a crack.The influence of construction joints,cables and hand writing on the identification of cracks is weakened.
作者
刘新根
陈莹莹
朱爱玺
杨俊
何国华
LIU Xin-gen;CHEN Ying-ying;ZHU Ai-xi;YANG Jun;HE Guo-hua(Shanghai Tongyan Civil Engineering Technology Co., Ltd., Shanghai 200092, China;Shanghai Engineering Research Center of Detecting Equipment for Underground Infrastructure,Shanghai 200092, China;Guizhou Expressway Group Co., Ltd.,Guiyang 550004, China)
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2018年第6期2243-2251,共9页
Journal of Guangxi University(Natural Science Edition)
基金
贵州省科技计划项目(黔科合支撑[2016]2318)
上海人才发展资金资助项目(2017055)
上海市2018年技术标准专项项目(18DZ2202300)
关键词
裂缝检测
深度学习
图像分类
图像识别
crack detection
deep learning
image classification
image recognition