摘要
该方法主要分成三个步骤:首先对原始点云进行预处理,将点云分配到二维网格,在每一个二维网格根据局部最低高程滤除地面点,然后再对非地面点进行欧式聚类;对于聚类后的对象,利用迭代最小割算法对混合点云进行分割,分离混合点云中的杆状交通设施;最后,根据杆状交通设施的先验知识和形状知识构建滤波器,从所有的对象点云中检测出杆状交通设施点云。
This method is mainly divided into three steps.First,the original point cloud is preprocessed,and the point cloud is distributed to a two-dimensional grid.In each two-dimensional grid,the ground points are filtered according to the local minimum elevation,and then the non-ground points are Euclidean-distance clustered;then the iterative minimum cut algorithm is used to segment the mixed point cloud,and pole-like traffic facilities are able to be separated from the mixed point cloud;finally,according to prior knowledge and shape knowledge of pole-like traffic facilities,a filter is constructed to detect pole-like traffic facility clouds from all object point clouds.
作者
孙春生
Sun Chunsheng(Nanjing Agile Eagle Digital Surveying and Mapping Limited Company,Nanjing 210019,China)
出处
《城市勘测》
2018年第6期82-84,共3页
Urban Geotechnical Investigation & Surveying
基金
江苏省测绘地理信息科研项目(JSCHKY201513)
关键词
激光点云
杆状交通设施
自动提取
laser point clouds
pole-like traffic facilities
automatic extraction