期刊文献+

微波水热法制备ZnO/氧化石墨烯及其光电化学性能研究

Synthesis of ZnO/graphene oxide nanocomposite by microwave hydrothermal method and its photoelectrochemical property
下载PDF
导出
摘要 利用微波水热法在316L不锈钢片基底上制备一维ZnO纳米阵列/氧化石墨烯(ZnO/GO)复合材料,借助SEM、TEM、UV-Vis及可见光光照下的恒电位i-t曲线等手段,对加入氧化石墨烯浓度不同的ZnO/GO样品的形貌、结构及光电化学性能进行表征。结果表明,ZnO纳米棒均匀垂直于316L不锈钢基底生长,GO片层嵌入在ZnO纳米棒结构中间;GO的引入促进了ZnO中产生的光生电子-空穴对的分离,从而使ZnO/GO复合材料相较于ZnO具有更佳的光电化学性能。当加入GO溶液浓度为0.5mg/mL时,所制样品中ZnO纳米棒阵列发育完善、排列致密,样品的光电流密度达到18μA/cm^2,为纯一维ZnO纳米结构相应值的3.6倍。 The one-dimentional ZnO/graphene oxide(ZnO/GO)were rapidly synthesized on the 316L stainless steel substrate by microwave hydrothermal method.The morphology,structure and photoelectrochemical property of the as-prepared nanocomposites were characterized by SEM,TEM,UV-Vis and amperometric i-t curve under visible light.The results show that uniform ZnO nanorods vertically grow on the substrate with layer-like GO embedded in the structure.ZnO/GO nanocomposite exhibits much improved photoelectrochemical property over ZnO nanoarrays because the introduction of GO facilitates the separation of photogenerated electron-hole pairs in ZnO.When the GO concentration is 0.5mg/mL,well-grown ZnO nanorods are densely arranged on the substrate,and the photocurrent density of the sample reaches18μA/cm^2,which is 3.6times than that of one-dimentional ZnO nanoarrays.
出处 《武汉科技大学学报》 CAS 北大核心 2019年第1期22-27,共6页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(51601136 51471122) 湖北省自然科学基金重点资助项目(2015CFA128) 中国博士后科学基金特别资助项目(2015T80842)
关键词 ZNO纳米棒阵列 氧化石墨烯 微波水热法 光电化学性能 电荷转移 ZnO nanorod array graphene oxide microwave hydrothermal method photoelectrochemical property charge transfer
  • 相关文献

参考文献7

二级参考文献163

  • 1王许杰,方芳,楚学影,方铉,李金华,魏志鹏,王晓华.自支撑Ag掺杂ZnO花状纳米线阵列及其光学性质[J].发光学报,2014,35(3):306-311. 被引量:2
  • 2施利毅,马书蕊,冯欣,王少飞.一维氧化锌纳米棒制备技术的最新研究进展[J].材料导报,2006,20(F11):86-89. 被引量:10
  • 3Patzke G R,Krumeich F, et al. [J]. Angewandte Chemie Inter- national Edition, 2002,41 (14) : 2446-2461.
  • 4Wang N, Cai Y, et al. [J]. Materials Science and Engineering: R:Reports,2008,60(1):1-51.
  • 5Comini E,Baratto C, et al. [J]. Progress in Materials Science, 2009,54 (1) : 1-67.
  • 6Udom I,Ram M K,et al. [J]. Materials Science in Semiconduc- tor Processing, 2013,16(6) : 2070-2083.
  • 7George A,Kumari P, et al. [J]. Materials Chemistry and Phys- ics,2010,123(2) :634-638.
  • 8Wagner R, Ellis W. [J]. Applied Physics Letters, 1964,4 (5): 89-90.
  • 9Kim D,G6sele U, et al. [J]. Journal of Crystal Growth, 2009, 311(11) :3216-3219.
  • 10Hu J,Gordon R G. [J]. Journal of Applied Physics, 1992,72 (11) :5381-5392.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部