期刊文献+

电子商务环境下多元个性化服务推荐研究 被引量:1

Research on personalized and diversified recommendations in E-business
下载PDF
导出
摘要 在分析电子商务服务推荐系统基本工作原理的基础上,给出了推荐技术的分类标准。系统介绍了基于内容、协同过滤、基于关联规则、基于知识和基于人口统计信息等主要服务推荐算法。对这些算法的优缺点进行综合对比,对组合推荐算法的思路进行了简要介绍,给出了算法评价标准和实验常用数据集。最后,对推荐系统现存的主要问题进行了分析,并对未来的研究热点进行了预测和展望。 On the basis of analyzing the basic working principles of e-business recommendation system,the technical recommendation standard is given.The paper systematically introduces some common recommend technologies such as recommendation based on contents,collaborative filtering recommendation,rules,Knowledge-based and demographic-based recommendations.After that,the advantages and disadvantages of these above-mentioned technical recommendations are provided.The combined recommendation algorithm is briefly introduced.Recommendation evaluation and common data sets are also introduced.Then,existing problems on personalized recommendation are analyzed.Finally,Future research challenges facing e-business recommendation are presented.
作者 崔睿宇 杨怀洲 CUI Ruiyu;YANG Huaizhou(School of Computer Science,Xi'an Shiyou University,Xi'an 710065,China)
出处 《智能计算机与应用》 2019年第1期173-177,共5页 Intelligent Computer and Applications
基金 西安市科技计划项目(201805038YD16CG22(2))
关键词 服务推荐 电子商务 协同过滤 算法评价 service recommendation E-business collaborative filtering algorithm evaluation
  • 相关文献

参考文献1

二级参考文献72

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献543

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部