期刊文献+

基于差分进化算法SVM的公交通勤乘客识别 被引量:1

Public Traffic Passenger Recognition Based on Differential Evolution Algorithm SVM
下载PDF
导出
摘要 通勤乘客是在早晚高峰出行并具有一定出行规律的人群,准确地从公交刷卡数据中识别通勤人群,对采取措施缓解早晚高峰交通拥堵和整个城市公交线网规划和调整具有重要意义。本文以珠海市公交IC卡数据为依托,提出一种基于差分进化算法优化支持向量机(SVM)的公交通勤识别方法。首先通过通勤乘客调查和实际刷卡数据相结合,分析出通勤乘客出行的特征属性;然后采用SVM算法构建分类识别模型,并利用差分进化算法(DE)对SVM进行参数寻优,得到最优识别模型,其识别准确率高达94.28%,优于其他算法模型;最后利用该模型对珠海公交IC卡数据中的通勤人群进行识别,结果显示其公交通勤人数为178 259人,占公交出行总人数的21.47%。 Commuter passengers are people who travel during the rush hours in the morning and evening and have a regular pattern of travel.Accurate identification of commuter crowds from bus credit card data is of great significance for taking measures to alleviate traffic congestion during the rush hours in morning and evening and for overall urban line network planning and adjustment.Based on the data of Zhuhai bus IC card,this paper proposes a public transportation identification method based on differential evolutionary algorithm to optimize support vector machine(SVM).Firstly,the commuter passenger survey data are combined with the actual swipe data to analyze the characteristic attributes of commuter passenger travel.Then the SVM algorithm is used to build the classification recognition model,and a differential evolution algorithm(DE)is used to optimize the parameters of the SVM to obtain the optimal identification model,whose recognition accuracy is as high as94.28%,better than other algorithm models.Finally,the model is used to identify the commuters in the Zhuhai bus IC data.The results show that the number of public transportation personnel is178,259,accounting for21.47%of the total number of bus trips.
作者 吕攀龙 翁小雄 彭新建 Lü Panlong;WENG Xiaoxiong;PENG Xinjian(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou Guangdong 510640,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第1期106-114,共9页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(51578247) 广东省交通运输厅科技项目(科技-2015-02-076)
关键词 城市交通 公交IC卡 差分进化算法 SVM 通勤乘客 urban traffic bus IC card differential evolution SVM commuter passengers
  • 相关文献

参考文献9

二级参考文献122

  • 1辛斌,陈杰,彭志红,窦丽华.基于互补变异算子的自适应差分进化算法[J].东南大学学报(自然科学版),2009,39(S1):10-15. 被引量:4
  • 2徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报,2005,25(1):15-18. 被引量:3
  • 3郑远,杜豫川,孙立军.美国联邦公路局路阻函数探讨[J].交通与运输,2007,23(B07):24-26. 被引量:30
  • 4Navick DS, Furth PG. Using location-stamped fareboxdata to estimate passenger-miles, O-D patterns, and loads [ C ]. TRB 2002 Annual Meeting, 2002.
  • 5Cui A. Bus-passenger origin-destination matrix estimation using automated data collection systems [ D]. MIT Master Thesis, 2006.
  • 6M Farin J. Constructing an automated bus origin-destination matrix using farecard and GPS data in Sao Paulo, Brzail [ C ]. TRB 2008 Annual Meeting, 2008.
  • 7Barry JJ, Newhouser R, Rahbee A, et al. Origin and destination estimation in new york city using automated fare system data [ J ]. Transportation Research Record, 2002, (1871) : 183-187.
  • 8Zhao I, Rahbee A, Wilson N. Estimation a rail passenger trip origin-destination matrix using automatic data collection systems [ J ]. Computer-Aided Civil and Infrastructure Engineering, 2007, (22) :376-387.
  • 9Store R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 10Zhang Chun-mei, Chen Jie, Xin Bin, et al. Differential evolution with adaptive population size combining lifetime and extinction mechanisms[C]. The 8th Asian Control Conf. Kaohsiung: IEEE, 2011: 1221-1226.

共引文献176

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部