期刊文献+

基于数据驱动方法的集装箱龙门起重机能源系统健康状态预测 被引量:2

Health prediction of energy system of gantry container cranes based on data-driven method
下载PDF
导出
摘要 为实现起重机节能环保和延长电池组的寿命,以电池的剩余容量作为集装箱龙门起重机能源系统健康状态的评价标准,建立BP神经网络和最小二乘支持向量机(least squares support vector machine,LSSVM)两种电池剩余容量预测模型。分别采用梯度下降算法和标准粒子群优化算法对两种预测模型中的参数进行优化。利用训练好的模型进行电池剩余容量预测。将两种模型的预测值与实测值进行对比分析,结果表明这两种模型都具有高的预测精度,而LSSVM模型是更合适的预测模型。 In order to realize the energy saving and environmental protection of cranes and prolong the life of battery pack,the remaining battery capacity is used as the evaluation standard for the health of the energy system of gantry container cranes.Two remaining capacity prediction models of BP neural network and the least squares support vector machine(LSSVM)are established.The parameters of the two prediction models are optimized by the gradient descent algorithm and the standard particle swarm optimization algorithm.The remaining battery capacity is predicted by the trained models.Comparing the predicted values of the two models with the measured values,it shows that the two models are both of high prediction accuracy,and the LSSVM model is more appropriate.
作者 杜明泽 嘉红霞 DU Mingze;JIA Hongxia(Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)
出处 《上海海事大学学报》 北大核心 2018年第4期70-74,共5页 Journal of Shanghai Maritime University
关键词 集装箱龙门起重机 能源系统 健康状态预测 BP神经网络 最小二乘支持向量机(LSSVM) gantry container crane energy system health prediction BP neural network least squares support vector machine (LSSVM)
  • 相关文献

参考文献1

二级参考文献20

  • 1E Meissner,G Richter. The challenge to the automotive battery industry:the battery has to become an increasingly integrated component within the vehicle electric power system[J].Journal of Power Sources,2005,(02):438-460.
  • 2P Bubna,D Brunner,S G Advani. Prediction-based optimal power management in a fuel cell/battery plug-in hybrid vehicle[J].Journal of Power Sources,2010,(19):6699-6708.
  • 3R Kaiser. Optimized battery-management system to improve storage lifetime in renewable energy systems[J].Journal of Power Sources,2007,(01):58-65.
  • 4M U Macdonald,N A Bomberger. Predicting failure of secondary batteries[J].Journal of Power Sources,1998,(01):87-98.
  • 5D U Sauer,H Wenzl. Comparison of different approaches for lifetime prediction of electrochemical systems——Using lead-acid batteries as example[J].Journal of Power Sources,2008.534-546.
  • 6H Wenzl,I Baring-Gould,R Kaiser. Life prediction of batteries for selecting the technically most suitable and cost effective battery[J].Journal of Power Sources,2005,(02):373-384.
  • 7Q Zhang,R E White. Capacity fade analysis of a lithium ion cell[J].Journal of Power Sources,2008,(02):793-798.
  • 8J Li,E Murphy,J Winnick. Studies on the cycle life of commercial lithium ion batteries during rapid chargedischarge cycling[J].Journal of Power Sources,2001,(1-2):294-301.
  • 9Li Ran,Wu Junfeng,Wang Haiying. Prediction of state of charge of Lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory[A].2010.684-688.
  • 10S Lee,J Kim,J Lee. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge[J].Journal of Power Sources,2008,(02):1367-1373.

共引文献83

同被引文献42

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部