期刊文献+

基于核稀疏表示的多模身份识别算法

Multi-modal identification algorithm based on kernel sparse representation
下载PDF
导出
摘要 针对训练样本与测试样本非线性可分问题,借助核算法,将样本特征向量映射到易实现线性可分的核空间,进而在高维核空间内运用核稀疏表示对所提取的特征进行分类表达。该算法受益于将核稀疏表示理论同多模生物识别技术相结合,使其对生物特征图像有较强的鲁棒性。实验证明基于核稀疏表示的多模身份识别算法在遮挡、含噪声的情况下具有较好的识别准确率,相较于其他同类算法在性能上有一定程度的提高。 Aiming at the problem of non-linear separability between training sample and test sample,this paper uses the kernel arithmetic to map the sample eigenvector to the kernel space which is easy to realize linear separability,and then the kernel sparse representation is used in the high-dimensional kernel space to classify the extracted features.This algorithm benefits from the combination of kernel sparse representation theory with multi-modal biometrics,which results in robustness to biometric images.Experiments show that the multi-modal identification algorithm based on kernel sparse representation has better recognition accuracy under occlusion and noises,which improves the performance to some extent compared with other similar algorithms.
作者 郑秋梅 曹佳 王风华 马茂东 李波 ZHENG Qiu-mei;CAO Jia;WANG Feng-hua;MA Mao-dong;LI Bo(Department of Computer and Communication Engineering,China University of Petroleum,Qingdao 266580,China)
出处 《电子设计工程》 2019年第1期179-183,共5页 Electronic Design Engineering
基金 国家自然科学基金(61305008)
关键词 核稀疏表示 多模生物识别 降维 特征融合 kernel sparse representation dimensionality reduction multimodal biometrics feature fusion
  • 相关文献

参考文献6

二级参考文献104

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2Han M J,Hsu J H,Song K T,et al.A new information fusion method for bimodal robotic emotion recognition[J].Journal of Computers,2008,3(7):39-47.
  • 3Zeng Z,Tu J,Pianfetti B M,et al.Audio-visual affective expression recognition through multistream fused HMM[J].IEEE Transactions on Multimedia,2008,10(4):570-577.
  • 4Jaimes A,Sebe N.Multimodal human-computer interaction:a survey[J].Computer Vision and Image Understanding,2007,108(1):116-134.
  • 5Wang Y,Guan L.Recognizing human emotional state from audiovisual signals[J].IEEE Transactions on Multimedia,2008,10(5):936-946.
  • 6Blaschko M B,Lampert C H.Correlational spectral clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition,CVPR 2008,2008:1-8.
  • 7Melzer T,Reiter M,Bischof H.Appearance models based on kernel canonical correlation analysis[J].Pattern Recognition,2003,36(9):1961-1971.
  • 8Wang Y,Guan L,Venetsanopoulos A N.Kernel crossmodal factor analysis for information fusion with application to bimodal emotion recognition[J].IEEE Transactions on Multimedia,2012,14(3).
  • 9Zhao J,Fan Y,Fan W.Fusion of global and local feature using KCCA for automatic target recognition[C]//Fifth International Conference on Image and Graphics,ICIG’09,2009:958-962.
  • 10Qi L,Chen E,Mu X,et al.Recognizing human emotional state based on the 2D-FrFT and FLDA[C]//2nd International Congress on Image and Signal Processing,CISP’09,2009:1-4.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部