期刊文献+

磁流体动力加速风洞技术发展分析 被引量:1

Research on Development of Magneto-hydro-dynamics Acceleration Wind Tunnel Technology
下载PDF
导出
摘要 针对高超声速飞行器地面模拟试验需求,传统试验方法难以实现真实气体温度、清洁空气、大尺度、长时间、高马赫数模拟能力,磁流体动力加速风洞提供了全新技术路线。文章归纳了国内外磁流体动力加速风洞研究发展现状,介绍了磁流体动力加速风洞原理。文章对基于热电离的磁流体动力加速风洞方案进行了论述,采用高频等离子发生器为设备提供加热源,从而避免电极烧损所引起的污染问题,控制气体总温不超过3500K,使气体离子化低于30%,通过两级加速,达到出口马赫数为15的模拟环境。文章进一步分析了磁流体动力加速风洞关键技术问题。超声速气流电离技术方面,核心问题在于超声速气流电离规律与机理以及电离种子注入、电子束电离等关键技术;磁流体动力加速通道设计方面,重点考虑气流密度及磁感应强度等因素的综合影响以及电极设计技术;高超声速模拟测试方面,关键技术包括电磁屏蔽技术、微波干涉仪技术、平面激光诱导荧光技术、高分辨率高性能的光谱测试技术等。最后,提出了磁流体动力加速风洞技术发展建议。 According to the requirement of ground simulation test for hypersonic vehicle,the traditional test method is difficult to reflect the real gas temperature,clean air,large-scale,long-term and high Mach number simulation ability,and the magneto-hydro-dynamic acceleration wind tunnel provides a new technology route.Domestic and external development status of the magneto-hydro-dynamic acceleration wind tunnel is reviewed.The principle of magneto-hydro-dynamic acceleration wind tunnel is introduced.A magneto-hydrodynamic acceleration wind tunnel based on thermoelectric ionization is proposed.High frequency plasma generator is used to provide heating source for the equipment,so as to avoid the pollution caused by electrode burning.The total temperature of the gas is controlled below3500K,so that the gas ionization is less than30%.Through two-stage acceleration,the simulating environment of15Mach at the outlet is achieved.Furthermore,the key technical problems of magneto-hydro-dynamic acceleration wind tunnel are analyzed.In the field of supersonic gas ionization,the key problems lie in the law and mechanism of supersonic gas ionization and the key technologies such as ionization seed injection and electron beam ionization.In the design of magneto-hydro-dynamic acceleration channel,the comprehensive influence of gas flow density and magnetic induction intensity and the design technology of electrodes are mainly considered.The key technology of hypersonic simulation test include electromagnetic shielding technology,microwave interferometer technology,planar laser induced fluorescence technology,high resolution and high performance spectral testing technology,etc.Finally,suggestions are provided for future development of magneto-hydro-dynamic acceleration wind tunnel.
作者 左光 齐玢 欧东斌 ZUO Guang;QI Bin;OU Dongbin(Beijing Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing 100094, China;Beijing Key Laboratory of Arc Plasma Application Equipment, China Academy of Aerospace Aerodynamics, Beijing 100074,China)
出处 《航天返回与遥感》 CSCD 2018年第6期1-11,共11页 Spacecraft Recovery & Remote Sensing
关键词 磁流体动力 高超声速 风洞 地面模拟试验 天地往返飞行器 Magneto-hydro-dynamics hypersonic wind tunnel ground simulation test re-entry spacevehicle
  • 相关文献

参考文献5

二级参考文献77

  • 1鲍文,唐井峰,于达仁.MHD-Arc-Ramjet联合循环与AJAX间的性能比较[J].宇航学报,2007,28(1):157-161. 被引量:6
  • 2于达仁,唐井峰,鲍文.用于高超声速推进的MHD-Arc-Ramjet联合循环[J].航空学报,2007,28(4):769-775. 被引量:12
  • 3Bobashev S V, Golovachov Y P, van Wie D M. Deceleration of supersonic plasma flow by an applied magnetic field [R]. AIAA-2002- 2247, 2002.
  • 4Bobashev S V, Erofeev A V, I.apushkina T A, et al. Experiments on MHD control of attached shocks in diffuser [R]. AIAA-2003-169, 2003.
  • 5Bobashev S V, Erofeev A V, Lapushkina T A, et al. Recent results on MHD flow control at loffe institute[R]. AIAA-2006- 8012, 2006.
  • 6Kuranov A L, Sheikin E G. Magnetohydrodynamic control on hypersonic aircraft under "Ajax" concept[J]. Journal of Spacecraft and Rockets, 2005, 40(2); 174 -182.
  • 7Sheikin E G, Kuranov A L. MHD control in hypersonic aircraft[R]. AIAA -2005-1335, 2005.
  • 8Macheret S O, Shneider M N, Miles R B. Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization[J]. AIAA Journal, 2002, 40(1): 74-81.
  • 9Shneider M N, Maeheret S O, Miles R B. Comparative analysis of MHD and plasma methods of scramjet inlet control[R]. AIAA- 2003- 170, 2003.
  • 10Shneider M N, Macheret S O, Miles R B. Analysis of Magnetohydrodynamic control of scramjet inlets [J ]. AIAA Journal, 2004, 42(11): 2303-2310.

共引文献42

同被引文献24

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部