期刊文献+

基于传递距离的谱聚类算法 被引量:1

Spectral Clustering Algorithm Based on Transitive Distance
下载PDF
导出
摘要 谱聚类算法受到度量中尺度因子的影响,同时传统谱聚类算法通过欧氏距离度量样本间相似性也不准确。针对上述问题,提出一种基于传递距离的谱聚类算法。算法首先通过改进传统谱聚类中的度量方式,用基于传递距离的度量方式度量样本间相似性,并构建传递矩阵,接着用传递矩阵做相似度变换构建拉普拉斯矩阵,最终通过求特征值和特征向量完成聚类。基于传递距离的谱聚类算法在人工数据集及UCI数据集上均取得了良好的聚类结果,具有较好的鲁棒性和有效性。 Spectral clustering algorithms are influenced by the mesoscale factors of metrics,and similarity measured by Euclidean distance is not always accurate.In view of this situation,a spectral clustering algorithm based on transitive distance is proposed.The main idea contains three steps.First,a minimum spanning tree is constructed to do a similarity transformation,as a result a transfer matrix is generated.Second,we construct a Laplacian matrix by the transfer matrix of the first step.Data is projected into the eigen-space of this Laplacian matrix.Lastly,the clustering in the space of the second step is done.The experimental results on artificial data sets and UCI data sets show that the spectral clustering algorithm based on the transitive distance has good robustness and effectiveness.
作者 戴天辰 顾正弘 DAI Tian-chen;GU Zheng-hong(Yangzhou Branch,China Telecom,Yangzhou 225002,China;College of Information Engineering,Yangzhou University,Yangzhou 225127,China)
出处 《计算机与现代化》 2018年第12期61-66,共6页 Computer and Modernization
关键词 谱聚类 尺度因子 传递距离 传递矩阵 spectral clustering mesoscale factors transitive distance transitive matrix
  • 相关文献

参考文献5

二级参考文献51

  • 1谷瑞军,叶宾,须文波.一种改进的谱聚类算法[J].计算机研究与发展,2007,44(z2):145-149. 被引量:6
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 4Luxburg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4):395-416.
  • 5Filipponea M, Camastrab F, Masullia F, et al. A survey of kernel and spectral methods for clustering [J]. Pattern Recognition, 2008, 41(1):176-190.
  • 6Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
  • 7Wang C, Li W, Ding L, et al. Image segmentation using spectral clustering. // Proceedings of the 17th IEEE International Conference on Tools with Aritificial Intelligence, 2005:677-678.
  • 8Dhillon I S, Guan Y, Kulis B. Weighted graph cuts without eigenvectors: A multilevel approach[J]. IEEE Fransactions on Pattern Anaeysis and Machine Intelligence. 2007, 29(11):1944-1957.
  • 9Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(5):504-525.
  • 10Cristianini N, Taylor J S, Kandola J S. Spectral kernel methods for clustering// Proceedings of the Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002:649-655.

共引文献68

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部