摘要
针对总间隔支持向量机对噪声敏感的问题,引入pinball损失函数,提出基于pinball损失函数的总间隔支持向量机。同时提出噪声环境下的钢印打码字符识别方法,首先对钢印图像的字体进行预处理,然后使用基于pinball损失函数的总间隔支持向量机对图像特征进行分类。实验结果分析表明本文提出的基于pinball损失函数的总间隔支持向量机可以较好地应用于噪声环境下的钢印打码字符识别,在分类效果和ROC曲线指标上具有令人满意的效果。
Aiming at the noise sensitive problem of total margin support vector machine(TM-SVM),the pinball loss function is introduced,and the total margin support vector machine with pinball loss function(pin-TM-SVM)is proposed.Meanwhile,the recognition method for steel printing code in the noise environment is proposed.First,the preprocessing of steel printing image is carried out.Then the extracted image features are classified by pin-TM-SVM method.The experimental results show that the pin-TM-SVM has its distinctive ability of classification accuracy and ROC curve.
作者
周国华
商俊燕
ZHOU Guo-hua;SHANG Jun-yan(School of Information Engineering and Technology,Changzhou Institute of Light Industry Technology,Changzhou 213164,China)
出处
《计算机与现代化》
2018年第12期106-109,115,共5页
Computer and Modernization
基金
江苏省软科学研究项目(BK2017010)