期刊文献+

基于WMNPE间歇过程监测的改进SVDD算法

Improved SVDD algorithm based on WMNPE batch process monitoring
下载PDF
导出
摘要 间歇过程数据包含表征过程变化的相关信息和非相关信息,并且呈现高斯与非高斯的多分布等特点.为了更加充分地提取数据的有用信息和处理数据的非高斯性等问题,实现有效的过程监控,提出一种基于WMNPE间歇过程监测的改进SVDD算法.首先运用多向邻域保持嵌入(MNPE)算法来提取低维子流形以实现降维;再使用概率权值策略来提取表征过程变化的相关信息,通过Greedy方法提取低维子流形的特征样本;最后以支持向量数据描述(SVDD)方法建立监控模型进行监控.通过青霉素发酵过程仿真平台验证了所提算法的有效性. The batch process data contains both the relevant and irrelevant information,which characterizes the process change,and exhibits both the feature of Gaussian and non-Gaussian distribution.In order to extract the useful information of the data more sufficiently and treat the non-Gaussian problem of the data,an improved SVDD algorithm is proposed based on WMNPE batch process monitoring.Firstly,the multiway neighborhood preserving embedding(MNPE)algorithm is used to extract low-dimension submanifold for dimension reduction.Then,the probability weighting strategy is applied to extract the related information of the process change and Greedy method is applied to extract characteristic samples of low-dimension submanifold.Finally,the support vector data description(SVDD)method is used to establish monitoring model and carry out the monitoring.It is verified by means of penicillin fermentation process simulation platform that the algorithm proposed in this article will be valid.
作者 惠永永 赵小强 HUI Yong-yong;ZHAO Xiao-qiang(College of Electrical Engineering and Information Engineering,Lanzhou Univ. of Tech.,Lanzhou 730050,China)
出处 《兰州理工大学学报》 CAS 北大核心 2018年第6期107-111,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61763029) 甘肃省自然科学基金(1610RJZA016)
关键词 间歇过程 过程监控 多向邻域保持嵌入(MNPE)算法 支持向量数据描述(SVDD) batch process process monitoring multiway neighborhood preserving embedding(MNPE)algorithm support vector data description(SVDD)
  • 相关文献

参考文献1

二级参考文献16

  • 1刘世成,王海清,李平.基于多向核主元分析的青霉素生产过程在线监测[J].浙江大学学报(工学版),2007,41(2):202-207. 被引量:9
  • 2KRAMER M A.Nonlinear Principal component analysis using autoassociative neural networks[J].AIChE Journal,1991,37(2):233-243.
  • 3QIN S J,MCAVOY T J.Nonlinear PLS modeling using neural networks[J].Computers and Chemical Engineering,1992,16(4):379-391.
  • 4DONG D,MCAVOY T J.Batch tracking via nonlinear principal analysis[J].AIChE Journal,1996,42(8):2199-2208.
  • 5LEE J M,YOO C,LEE I B.Fault detection of batch processes using multiway kernel principal component analysis[J].Computers and Chemical Engineering,2004,28(9):1837-1847.
  • 6ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7HE Q P,WANG J.Statistics pattern analysis:a new process monitoring framework and its application to semiconductor batch processes[J].AIChE Journal,2011,57(1):107-121.
  • 8马贺贺.基于数据驱动的复杂工业过程故障检测方法研究[D].上海:华东理工大学,2012.
  • 9WANG J,HE Q P.Multivariate statistical process monitoring based on statistics pattern analysis[J].Industrial & Engineering Chemistry Research,2010,49(17):7858-7869.
  • 10AGUDO D,FERRER A,FERRER J,et al.Multivariate SPC of a sequencing batch reactor for wastewater treatment[J].Chemometrics and Intelligent Laboratory Systems,2007,85(1):82-93.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部