期刊文献+

基于改进布谷鸟搜索优化神经网络的AMT换挡电机控制 被引量:2

Control of AMT shift motor based on improved CS algorithm to optimize neural network
下载PDF
导出
摘要 针对神经网络在训练过程中出现权值和阈值更新不及时和误差较大等问题,提出一种基于改进布谷鸟搜索(CS)算法优化神经网络训练权值和阈值的方法,该算法模拟布谷鸟繁殖策略能够对电控机械式自动变速器(AMT)换挡电机进行位置和转矩实时跟踪控制以提高AMT换挡精度。通过对AMT换挡电机进行建模和仿真,研究经CS算法优化后的神经网络在控制电机时负载转矩的瞬态响应性能和抗负载扰动能力。通过与常规神经网络训练方法对比,结果表明,改进的CS算法优化神经网络控制策略在负载扰动、跟踪精度、控制响应等方面具有良好的动态性能和鲁棒性,其中响应时间和达到稳态时间分别减少了0. 02 s和0. 08 s,因此所提出的改进CS优化神经网络控制策略能够有效改善网络训练方法提高AMT的换挡品质。 In view of the problems that the weight and threshold updating of neural network is not timely and the errors are large during training,a method based on improved Cuckoo Search(CS)algorithm to optimize the weights and thresholds of neural network training was proposed.In the algorithm,the cuckoo breeding strategy was simulated to improve the AMT(Automatic Manual Transmission)shifting accuracy by performing position and torque real-time tracking control on the electronically controlled AMT shifting motor.By modeling and simulating the AMT shifter motor,the transient response performance and anti-load perturbation ability of the load torque of the neural network optimized by the CS algorithm when controlling the motor were studied.Compared with the conventional neural network training method,the results show that the improved CS neural network control strategy has good dynamic performance and robustness in terms of load disturbance,tracking accuracy,control response,etc.,in which the response time and reach the steady-state time reduced by 0.02 s and 0.08 s respectively.Therefore,the proposed improved CS optimization neural network control strategy can effectively improve the AMT shift quality.
作者 叶文 李翔晟 单外平 YE Wen;LI Xiangsheng;SHAN Waiping(College of Mechanical Engineering,Central South University of Forestry and Technology,Changsha Hunan 410004,China)
出处 《计算机应用》 CSCD 北大核心 2018年第A02期67-71,共5页 journal of Computer Applications
基金 湖南省自然科学基金资助项目(14JJ5014)
关键词 汽车 机械式自动变速器 换挡 电动机 布谷鸟搜索 神经网络 automotive Automatic Manual Transmission(AMT) shifting electric motor Cuckoo Search(CS) neural network
  • 相关文献

参考文献5

二级参考文献27

共引文献29

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部