期刊文献+

基于扩展朴素贝叶斯与谱聚类的混合推荐算法的研究

A hybrid recommendation algorithm based on extended naive Bayes and spectral clustering
下载PDF
导出
摘要 日常较为常用的推荐系统为协同过滤,其存在优势的同时也面临着很大的问题,因此需要寻求最优化的方式对其大量的数据进行分析。本文在常用的协同过滤算法之上,提出了一种基于扩展朴素贝叶斯与谱聚类的混合推荐算法,该混合推荐算法的原理是:首先将原本是数据的聚类问题通过谱聚类方法,转化为图的问题,通过此方法找到相近的数据,减小数据处理量;其次,结合扩展朴素贝叶斯算法,建立数据模型来预测数据,降低对时变数据处理的复杂性;最后根据用户对数据的兴趣变化,对模型进行局部调整,减少模型更新的复杂性。 The commonly used recommendation system is collaborative filtering,which has advantages but is also faced with great problems.Therefore,it is necessary to seek an optimized way to analyze a large amount of data.On collaborative filtering algorithm,this paper puts forward a simple based on extended bayesian spectral clustering and hybrid recommendation algorithm,the principle of the hybrid recommendation algorithm,originally is the data clustering problem through spectral clustering method,and transformed into the problem of figure,find the relevant data through this method,reduces the amount of data processing;Secondly,by combining with the extended naive Bayes algorithm,the data model is established to predict the data,which reduces the complexity of the time-varying data processing;Finally,according to the change of user's interest in data,the model is locally adjusted to reduce the complexity of model updating.
作者 解姗姗 Xie Shan-shan(School of Information Management, Minnan University of Science and Technology,Shishi Fujian 362700,China)
出处 《贵阳学院学报(自然科学版)》 2018年第4期6-8,31,共4页 Journal of Guiyang University:Natural Sciences
关键词 混合推荐算法 谱聚类 朴素贝叶斯 Hybrid recommendation algorithm Spectral clustering Naive Bayes
  • 相关文献

参考文献7

二级参考文献29

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 4李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 5David Goldberg,David Nichols,Brian M. Oki,Douglas Terry.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM.1992(12)
  • 6Paul Resnick,Hal R. Varian.Recommender systems[J]. Communications of the ACM . 1997 (3)
  • 7Ester M,Kriegel H P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceeding of the Second International Conference on Knowledge Discovery and Data Mining (KDD 96) . 1996
  • 8Basu C,,Hirsh H,W C.Recommendation as classification:Using social and content-based information in recommendationthe. AAAI‘98 . 1998
  • 9Kohrs A,Merialdo B.Cluster for collaborative filtering application. Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation . 1999
  • 10Chen, Y -H,E.I. George.A Bayesian Model for Collaborative Filtering. 7th International Workshop on Artificial Intelligence and Statistics . 1999

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部