期刊文献+

基于HDBSCAN动态跟踪客户用电行为模式 被引量:4

Dynamic Tracking of Customer's Load Behavior Pattern by HDBSCAN
下载PDF
导出
摘要 为了自动辨识出优质电力大客户并快速感知其负荷行为变化模式,文章通过HDBSCAN算法(hierarchical density-based spatial clustering of applications with noise),对大工业客户1个月内分钟级的负荷行为数据进行自动分类。依据聚类结果筛选出潜在优质的用电客户,对其负荷行为模式进行动态跟踪分析(这里所说的"动态"是指相邻时间段内不同负荷状态的转换模式,综合考虑状态特征和时域特征的变化),以找出用电行为异常、或存在负荷结构变化的客户,增强对电网系统的动态感知能力,降低潜在风险。该算法最大程度地避免了人为主观性经验的参与调整参数,采用这种无监督机器学习技术能极大程度地提高整体分析效率;属于自下而上的数据驱动感知用户侧精细行为模式,将能大面积快速感知到诸多潜在风险模式和异常行为模式。 To automatically identify high quality electricity customers whose changed(or abnormal)load behavior pattern can be quickly perceived,this article uses the HDBSCAN algorithm(Hierarchical Density-Based Spatial Clustering of Applications with Noise)to automatically cluster the customer’s load behavior data in minute level within a month.According to the clustering results,potential customers with high quality are filtered through dynamic tracking and analysis of their load behaviors(here,the“dynamic“refers to transitions between different load levels in adjacent periods,and the change of state feature and time domain feature is considered comprehensively).Detecting customer’s abnormal load behavior or changes in load structure,can enhance the dynamic perception of power grid system and reduce the potential risks.This algorithm which is a bottom-up data-driven method in quickly perceiving customer’s granularly behaviors where maybe exist potential risk patterns or abnormal patterns in a large area,avoids the subjective participation in adjusting parameters to the greatest extent.
作者 王继业 邓春宇 郑亚芹 张玉天 刘凤魁 WANG Jiye;DENG Chunyu;ZHENG Yaqin;ZHANG Yutian;LIU Fengkui(China Electric Power Research Institute Ltd.,Beijing 100192,China)
出处 《供用电》 2019年第1期10-16,共7页 Distribution & Utilization
基金 国家电网公司科技项目[SGRIJSKJ(2016)1104]~~
关键词 用电行为 动态跟踪分析 聚类 自适应 HDBSCAN electrical behavior dynamic tracking clustering self-adaptive HDBSCAN
  • 相关文献

参考文献4

二级参考文献34

  • 1黄健柏,黄向宇,邵留国,扶缚龙.基于系统动力学的峰谷分时电价模型与仿真 (一)模型的建立[J].电力系统自动化,2006,30(11):18-23. 被引量:25
  • 2黄健柏,黄向宇,邵留国,扶缚龙.基于系统动力学的峰谷分时电价模型与仿真 (二)仿真结果及其分析[J].电力系统自动化,2006,30(12):23-26. 被引量:6
  • 3冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-111. 被引量:87
  • 4关于推进“互联网+”智慧能源发展的指导意见[EB/OL].[2016-02-24].http://www.law-lib.com/law/law-view.asp?id-519961.
  • 5VERDU S V, GARCIA M O, SENABRE C, et al. Classification, filtering, and identification of electrical customer load patterns through the use of self organizing maps[J]. IEEE Trans on Power Systems, 2006, 21(4) : 1672 1682.
  • 6KOIVISTO M, HEINE P, MELLIN I, et al. Clustering of connection points and load modeling in distribution systems[J]. IEEE Trans on Power Systems, 2013, 28(2): 1255 1265.
  • 7CHICCO G, NAPOLI R, PIGLIONE F. Comparisons among clustering techniques for electricity customer classifieation[J].IEEE Trans on Power Systems, 2006, 21(2) : 933-940.
  • 8VARGA E D, BERETKA S F, NOCE C, et al. Robust real- time load profile encoding and classification framework for efficient power systems operation[J]. IEEE Trans on Power Systems, 2015, 30(4): 1897-1904.
  • 9ZHONG S, TAM K. Hierarchical classification of load profiles based on their characteristic attributes in frequency domain[J]. IEEE Trans on Power Systems, 2015, 30(5): 2434-2441.
  • 10TORRITI J. A review of time use models of residential electricity demand [J]. Renewable and Sustainable Energy Reviews, 2014, 37: 265-272.

共引文献88

同被引文献24

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部