期刊文献+

融合全局与局部特征的缩放图像质量评价 被引量:1

Image retargeting quality assessment combining global and local features
下载PDF
导出
摘要 基于内容感知的图像非等比例缩放方法旨在具有不同分辨率的显示设备上保持图像的重要内容,并改善主观质量.图像缩放质量评价是衡量图像非等比例缩放效果的客观依据,现有客观评价方法不能有效地给出合乎主观感受的评价结果,为此提出一种融合全局与局部特征的缩放图像质量评价方法.首先提出基于B样条函数的图像全局结构形变度,计算图像缩放前后全局图像之间的形变量;其次结合主观视觉特点改进纵横比相似度(Aspect Ratio Similarity,ARS)使其更适合缩放图像的形变检测;最后线性融合这些度量特征得到客观的缩放评价标准.在两种公开数据集上与多种代表性算法进行对比,实验结果表明,本文提出的图像缩放客观评价方法与主观评价具有更好的相关性. Content-aware based image retargeting methods aim at keeping the image on display devices with different resolutions unchanged and improving the subjective quality.Image retargeting quality assessment is used to measure the effect of image retargeting results from different retargeting methods.However,the existing objective assessment methods cannot provide efficient assessment with subjective feeling.Thus,a retargeting image assessment method based on combining global and local features is proposed.Firstly,a global structural deformation method based on B-spline function is proposed,it is obtained by calculating the shape variables between the regions before and after image retargeted;Secondly,it is made to be more suitable for deformation detection by combing the subjective visual features to improve the Aspect Ratio Similarity(ARS).Finally,these features are fused to obtain objective retargeting assessment criteria.Experimental results show that the proposed objective assessment method of image retargeting has a better correlation with the subjective assessment.
作者 于明 郝玉婷 YU Ming;HAO Yuting(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China;School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《河北工业大学学报》 CAS 2018年第6期63-69,共7页 Journal of Hebei University of Technology
基金 天津市科技计划项目(14RCGFGX00846 15ZCZDNC00130 17ZLZDZF00040) 河北省自然科学基金(F2015202239)
关键词 图像缩放 客观图像质量评价 全局结构变形 纵横比相似度 B样条函数 image retargeting objective image quality assessment global geometric change aspect ratio similarity Bspline function
  • 相关文献

参考文献4

二级参考文献142

  • 1彭晓明,陈武凡,马茜.基于B样条的弹性点配准方法[J].中国图象图形学报,2007,12(6):1079-1085. 被引量:6
  • 2Brown L G. A survey of image registration techniques. ACM Computing Surveys (CSUR), 1992, 24(4): 325-376.
  • 3Thirion J P. Image matching as a diffusion process: an anal- ogy with MaxwelVs demons. Medical Image Analysis, 1998, 2(3): 243-260.
  • 4Vercauteren T, Pennec X, Perchant A, Ayache N. Sym- metric log-domain diffeomorphic registration: a demons- based approach, h4edical Image Computing and Computer- Assisted Intervention - MICCAI 2008. Berlin Heidelberg: Springer 2008. 754-761.
  • 5Tang T W H, Chung A C S. Non-rigid image registration using graph-cuts. Medical Image Computing and Computer- Assisted Intervention - MICCAI 2007. Berlin Heidelberg: Springer 2007. 916-924.
  • 6Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral demons-image registration via global spectral cor- respondence. Computer Vision-ECCV 2012. Berlin Heidel- berg: Springer 2012. 30-44.
  • 7Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral log-demons: diffeomorphic image registration with very large deformations. International Journal of Computer Vision, 2014, 107(3): 254-271.
  • 8Fowlkes C, Belongie S, Clmng F, Malik J. Spectral grouping using the Nystr6m method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
  • 9Talwalkar A, Rostamizadeh A. Matrix coherence and the Nystr6m methods. In: Proceedings of the 26th Conference in Uncertainty in Artificial Intelligence. arXiv preprint arXiv: 1004.2008, 2010.
  • 10Drinea. P, Mahoney M W. On the NystrSm method for ap- proximating a gram matrix for improved kernel-based learu- ing. The Journal of Machine Learning Research, 2005, 6: 2153-2175.

共引文献35

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部