期刊文献+

分数三参数流体模型黏弹性材料的阻尼性能分析

Damping property of viscoelastic materials described by fractional derivative three-parameter fluid
下载PDF
导出
摘要 在一个应力循环中,黏弹材料阻尼特性主要体现在耗散柔量的相关项。在经典三参数黏弹性模型的基础上,采用Abel粘壶单元替代传统的牛顿粘壶单元,建立分数导数黏弹性三参数流体模型及其本构方程,并在频域内对反映黏弹性材料阻尼性能的复柔量、内摩擦角、阻尼比值等参量进行讨论。结果表明:分数微分算子的阶数能明显影响服从分数阶三参数流体模型黏弹性材料的储能柔量和损耗柔量的变化曲线,其耗散率会随着分数阶数的减小发生显著上升,而材料的内摩擦角曲线在不同的分数阶数下,随频率几乎不发生改变。 In a stress cycle of viscoelastic materials,the damping properties are mainly reflected by the related terms of dissipative compliance.Based on the classic three-parameter viscoelastic model,the Abel sticky cell is used to replace the traditional Newtonian viscous cell.The constitutive equation of the viscoelastic three-parameter fluid model with fractional derivative is founded and the damping performance of the viscoelastic material is studied.Parameters such as complex compliance,friction angle,and damping ratio are analyzed in the frequency domain.Conclusion:The order of the different fractional operators can significantly affect the energy and loss compliance of the viscoelastic material obeying the fractional three-parameter fluid model,and its dissipation rate curves will increase significantly when the fractional order decreases.The friction angle of the material is almost unchanged with frequency under different fractional orders.
作者 高云飞 张维维 王睿 GAO Yun-fei;ZHANG Wei-wei;WANG Rui(School of Architecture and Civil Engineering,Xinyang Normal University,Xinyang 464000,China)
出处 《河南城建学院学报》 CAS 2018年第6期28-31,37,共5页 Journal of Henan University of Urban Construction
基金 河南省科技攻关计划项目(182102310878 182102310834)
关键词 分数导数 三参数流体 阻尼 黏弹性 fractional derivative three-parameter fluid damping viscoelasticity
  • 相关文献

参考文献4

二级参考文献28

  • 1任伟伟,李宏伟.基于波速法的粘弹性材料高频阻尼性能测试研究[J].材料开发与应用,2013,28(5):55-58. 被引量:1
  • 2刘林超,张卫.服从分数代数Maxwell本构模型的粘弹性阻尼材料性能分析[J].材料科学与工程学报,2004,22(6):860-862. 被引量:10
  • 3[2]尹祥础.固体力学.北京:地震出版社,1985.
  • 4周光泉 刘孝敏.黏弹性理论[M].合肥:中国科学技术大学出版社,1996.55-57.
  • 5SHIMIZU N, ZHANG W. Fractional calculus approach to dynamic problem of viscoelastic materials [ J]. JSME,1999, 1(42): 827 - 830.
  • 6KENNETH S M. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York:John Wiley & Sons Inc, 1993.
  • 7DROZDOV A D. Fractional differential models in finite viscoelasticity[ J]. Acta Mech, 1997, 124(1): 155 - 180.
  • 8SAMKO S G, KILBAS A A, MARRICHER O Z. Fractioanl Integral and Derivatives: Theory and Application[M].New York: Gordon and Breach Science Publishers, 1993.
  • 9Nobuyuki SHIMIZU, Wei ZHANG. [J]. JSME International Journal 1999,42 Series C:827~830.
  • 10Oldham, K. B, Spanier,J. The fractional calculus [M]. Mathematics and Engineering. 1974,111:136. Academic Press, New York.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部