期刊文献+

基于IMM-RDCKF的机动目标跟踪算法 被引量:2

Maneuvering Target Tracking Algorithm Based on IMM-RDCKF
下载PDF
导出
摘要 针对机动目标跟踪问题,提出了一种IMM-RDCKF算法。首先充分利用量测方程中只有部分状态变量是非线性的特点,对于非线性的量测方程采用降维滤波方法,可以在保障跟踪精度条件下减小计算量。其次,对IMM算法中的转移概率矩阵进行实时估计,提高了模型匹配概率。再次,滤波过程中由于误差累积可能导致协方差矩阵失去正定性,对算法进行了优化,确保了滤波过程中协方差矩阵的正定性,提高了算法稳定性。Monte-Carlo仿真结果表明,与CKF算法相比,该算法的跟踪精度有明显的提高,计算效率提高了一倍。 A tracking algorithm based on IMM-RDCKF is proposed to solve the maneuvering target tracking.Firstly,the reduced dimension cubature Kalman filter is used in the measurement equation for the characteristics that only part of the state variables are nonlinear,which can decrease the amount of calculation while ensure the tracking accuracy.Secondly,the transfer probability matrix in IMM algorithm is estimated in real-time to improve the model matching probability.At last,the error accumulation in the filtering process may lead to the loss of positive definite property of the covariance matrix,so the proposed algorithm is optimized to ensure positive definite property of the covariance matrix in the filtering process,which can improve the stability of the algorithm.Compared with CKF algorithm,the Monte-Carlo simulation results show that the algorithm improves the tracking accuracy,and the computational efficiency is twice as large as the CKF algorithm.
作者 周昆正 ZHOU Kunzheng(The 20th Research Institute of China Electronics Technology Group Corporation,Xi’an 710068,China)
出处 《雷达科学与技术》 北大核心 2018年第6期656-660,666,共6页 Radar Science and Technology
关键词 机动目标跟踪 交互多模型 时变Markov转移概率 降维容积卡尔曼滤波 协方差矩阵正定 maneuvering target tracking interacting multiple model(IMM) time-varying Markov transition probability reduced dimension cubature Kalman filter positive definite property of covariance matrix
  • 相关文献

参考文献7

二级参考文献40

  • 1严恭敏,严卫生,徐德民.基于欧拉平台误差角的SINS非线性误差模型研究[J].西北工业大学学报,2009,27(4):511-516. 被引量:22
  • 2张树春,胡广大.跟踪机动再入飞行器的交互多模型Unscented卡尔曼滤波方法[J].自动化学报,2007,33(11):1220-1225. 被引量:15
  • 3KIM B D,LEE J S.IMM Algorithm Based on the Ana- lytic Solution of Steady State Kalman Filter for Radar Target Tracking[C]//Radar Conference,2005 IEEE International.IEEE,2005:757-762.
  • 4MAZOR E,AVERBUCH A,BAR-SHALOM Y,et al. Interacting Multiple Model Methods in Target Tracking: a Survey[J].Aerospace and Electronic Systems,IEEE Transactions on,1998,34(1):103-123.
  • 5SUNAHARA Y,YAMASHITA K.An Approximate Method of State Estimation for Non-Linear Dynamical Systems with State-Dependent Noise[J].International Journal of Control,1970,11(6):957-972.
  • 6JULIER S J,UHLMANN J K.Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 7WAN E A,Yan Der Merwe R.The Unscented Kalman Filter for Nonlinear Estimation[C]//Adaptive Systems for Signal Processing,Communications,and Control Symposium 2000.AS-SPCC.The IEEE 2000.IEEE,2000;153-158.
  • 8ARASARATNAM I,HAYKIN S.Cubature Kalman Fil- ters[J].Automatic Control,IEEE Transactions on,2009,54(6):1254-1269.
  • 9ARASARATNAM I,HAYKIN S,Hurd T R.Cubature Kalman Filtering for Continuous-Discrete Systems:The- ory and Simulations[J].Signal Processing,IEEE Transactions on,2010,58(10):4977-4993.
  • 10BHAUMIK S.Cubature Quadrature Kalman Filter[J]. IET Signal Processing,2013,7(7):533-541.

共引文献46

同被引文献15

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部