摘要
The nitrogen-containing compounds in Changqing crude oil, its atmospheric residue(AR), and vacuum reside(VR) were characterized by negative and positive ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). The heteroatom compounds(N_1, N_2, N_1O_1, O_1, and O_2 class species) could be identified by the negative ESI analysis, while the positive mode could only detect the N_1, N_2, and N_1O_1 class species. Among them, the N_1 class species were found to be predominant in crude oil, as confirmed by either negative or positive ESI analyses,which were similar in composition to AR and VR. These compounds with higher abundance were characterized by double bond equivalent(DBE) values and carbon numbers. The composition of these compounds in crude oil and its AR as well as VR was correlated with their different boiling range, DBE values and carbon numbers. The negative ESI analysis showed that the abundant N_1 class species in crude oil and AR were centered at a DBE value of 12, and these species were likely benzocarbazoles, while the N_1 class species with the DBE value ranging from 13 to 16 having more complicated molecular structures were dominant in VR. And the positive ESI analysis gave the information of the abundant N_1 class species in crude oil, AR, and VR having the DBE values in the range of 10, 9―11, and 10―16, respectively, which were likely the compounds with the core of quinoline and benzoquinoline. The analysis confirmed that the distillation process in refinery preferentially removed the low DBE value and low molecular N-class species and brought them into the light and medium distillates, while those N-class species having a high molecular condensation in the molecules with large carbon number remained in the residual oil and could continually affect the downstream oil refining process.
The nitrogen-containing compounds in Changqing crude oil, its atmospheric residue(AR), and vacuum reside(VR) were characterized by negative and positive ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). The heteroatom compounds(N_1, N_2, N_1O_1, O_1, and O_2 class species) could be identified by the negative ESI analysis, while the positive mode could only detect the N_1, N_2, and N_1O_1 class species. Among them, the N_1 class species were found to be predominant in crude oil, as confirmed by either negative or positive ESI analyses,which were similar in composition to AR and VR. These compounds with higher abundance were characterized by double bond equivalent(DBE) values and carbon numbers. The composition of these compounds in crude oil and its AR as well as VR was correlated with their different boiling range, DBE values and carbon numbers. The negative ESI analysis showed that the abundant N_1 class species in crude oil and AR were centered at a DBE value of 12, and these species were likely benzocarbazoles, while the N_1 class species with the DBE value ranging from 13 to 16 having more complicated molecular structures were dominant in VR. And the positive ESI analysis gave the information of the abundant N_1 class species in crude oil, AR, and VR having the DBE values in the range of 10, 9―11, and 10―16, respectively, which were likely the compounds with the core of quinoline and benzoquinoline. The analysis confirmed that the distillation process in refinery preferentially removed the low DBE value and low molecular N-class species and brought them into the light and medium distillates, while those N-class species having a high molecular condensation in the molecules with large carbon number remained in the residual oil and could continually affect the downstream oil refining process.
基金
supported by the Young Talent Fund of University Association for Science and Technoloqy in Shaanxi, China (No. 20160222)
The PetroChina Innovation Foundation (No. 2016D-5007-0404)
the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JQ2034)