期刊文献+

基于深度学习的雾天车标识别

Vehicle Logo Recognition on Fog Weather Based on Deep Learning
下载PDF
导出
摘要 车标作为车辆的一个重要信息,在智能交通系统中对于车辆的识别起到一个非常重要的辅助作用,然而雾天摄像机采集到的图片模糊不清,使得雾天的车标识别成为现阶段智能交通系统的一个重要问题。因此,提出一种深度学习与图像去雾相结合的方法,该方法加入图像去雾算法,具有图像增强、降低噪声等优点。实验表明,这种方法正确率较高,在大雾天气情况下准确性和稳定性都较好,很好地解决雾天车标识别的问题。 The logo as an important information of the vehicle plays an important auxiliary role in recognition of vehicle in Intelligent Traffic System (ITS), however the images captured by camera in fog weather are blurred, which makes the recognition of vehicle in fog weather became an important issue in current Intelligent Traffic System. Therefore, proposes a method combined deep learning with image defog, which adds image defog algorithm, and has the advantage of image enhancement and noise reduction and so on. Experimental results demonstrate that the proposed method has a high accuracy, and even in the condition of dense fog, it still has a better accuracy and stability, and it's also a good solution of the problem of vehicle logo recognition in fog weather.
作者 曾珍 周欣 魏彪 杨映波 ZENG Zhen;ZHOU Xin;WEI Biao;YANG Ying-bo(College of Computer Science, Sichuan University, Chengdu 610065)
出处 《现代计算机(中旬刊)》 2018年第12期26-31,共6页 Modern Computer
基金 公安部四川省重点技术创新计划资助项目(No.01XM013)
关键词 深度学习 图像去雾 车标识别 暗通道优先算法 卷积神经网络 Deep Learning Image Defog Vehicle Logo Recognition Dark Channel Priority Algorithm Convolutional Neural Network
  • 相关文献

参考文献4

二级参考文献63

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部