期刊文献+

基于卷积神经网络的自然场景门牌多数字识别研究

Multi-Digit Number Recognition from SVHN in Natural Scene Based on Convolutional Neural Network
下载PDF
导出
摘要 自然场景门牌号码由于图像模糊、光照不均匀、弱光照等情况下,产生严重的畸变,导致字符识别难以取得理想的效果,识别任意长度的字符更是一个难题。用卷积网络提取特征,构建一个识别单数字的卷积神经网络;在不分割字符的情况下,用循环网络生成字符序列,构建一个识别多数字的深度卷积神经网络。使用卷积网络和循环网络融合的网络结构,在SVHN数据集上进行验证,精度方面取得较好的效果,尤其是单数字门牌号码的识别率95.72%,多数字门牌号码的识别率89.14%。 Due to blurred image, uneven illumination, weak illumination, etc., the natural scene number is difficult to achieve desired result. It is more difficult to recognize string of arbitrary length. Proposes the convolutional network and the recurring network, the former is to extract the features, and the latter is to generate the final character sequence, constructs a convolutional neural network that recognizes single digit and a deep convolutional neural network that identifies multi numbers without splitting the characters. By validating it on the public SVHN dataset, the recognition rate of single number is 95.72%, the recognition rate of multi-digit number is 89.14%, and the accuracy is better than other methods.
作者 钟菊萍 高静 李军 ZHONG Ju-ping;GAO Jing;LI Jun(Institute of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665;Guangdong Hengdian Information Technology Co. Ltd., Guangzhou 510635)
出处 《现代计算机(中旬刊)》 2018年第12期32-36,共5页 Modern Computer
基金 广州市科技计划项目(No.201803030013) 广东省联合培养研究生示范基地(No.991512712 991510307)
关键词 多数字识别 自然场景门牌 卷积神经网络 机器学习 Multi-Digit Number Recognition Natural Scene House Number Convolutional Neural Network Machine Learning
  • 相关文献

参考文献3

二级参考文献17

  • 1KAHN P,KITCHEN L,RISCMAN E M.A fast line finder for vision-guided robot navigation[J].IEEE Trans.on Pattern Anal and Machine Intell.,1990,12(11):1098-1102.
  • 2SHI Wenxia,SAMARABANDU Jagath.Investigating the performance of corridor and door detection algorithms in different environments[C].Orlando Florida;IEEE International Conference on Robotics and Automation,2006.
  • 3RAFAEL Munoz-Salinas,EUGENIO Aguirre,MIGUEL Garcia-Silvente,et al.Door detection using computer vision and fuzzy logic[J].WSEAS Transactions on Systems,2004,10(3):3047-3052.
  • 4OTSU N.A threshold selection method from gray-level histogram[J].IEEE Trans.Systems,Man and Cybernetics,1979,9(1):62-66.
  • 5GATOS B,PAPERMARKOS N,CHAMZAS C.Skew detection and text line position determination in digitized documents[J].Pattern Recognition,1997,30(9):1505-1519.
  • 6PSTL W.Detection of linear oblique structure and skew scar in digitized documents[C].Paris,France;Proceedings of the 8th International Conference on Pattern Recognition,1986.
  • 7赵建蕾,王汇源,方颖.偏暗或泛白背景的车牌图像二值化方法[J].计算机工程,2008,34(6):210-211. 被引量:5
  • 8余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:610
  • 9刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,31(7):1921-1930. 被引量:291
  • 10黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述[J].计算机学报,2014,37(6):1225-1240. 被引量:195

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部