期刊文献+

碳纳米纤维/Co_3O_4复合电极的制备及电化学性能研究

Preparation and Electrochemical Performance Study of CNFs/Co_3O_4 Composites
下载PDF
导出
摘要 采用静电纺丝制备得到碳纳米纤维(CNFs)无纺布,经预氧化、碳化处理后作为电极支撑材料,再由水热法合成得到海胆状CNFs/Co_3O_4和雪花型CNFs/Co_3O_4-S两种形貌的复合电极材料.通过扫描电子显微镜(SEM),傅里叶红外光谱(FTIR)和X线衍射(XRD)对复合电极材料形貌和结构进行表征,并对其电化学性能进行详细测试.结果表明:在1A/g的电流密度下,雪花型CNFs/Co_3O_4-S比海胆状CNFs/Co_3O_4复合电极材料具有更高的比电容,为451.11F/g,且在1500次充放电后其比电容保留率高达88.07%,具有良好的循环稳定性. Carbon nanofibers(CNFs) non-woven fabrics prepared by electrospinning were used as electrode support materials after pre-oxidation and carbonization.Different morphologies of composite electrode materials with sea urchin-like CNFs/Co3O4 and snowflake-like CNFs/Co3O4-S were synthesized by hydrothermal method.Scanning electron microscopy (SEM),Fourier transform infrared spectroscopy(FTIR) and X-ray diffraction(XRD) were respectively used to characterize the composites.The electrical performance and properties of the composites were measured by cyclic voltammetry,galvanostatic charge-discharge and impedance methods.The result illustrated that the snowflake-like CNFs/Co3O4-S composite electrode under 1A/g electric current density has a higher electrochemical capacitance of 451.11F/g and maintained 88.07% of its initial capacitance after 1500 cycles.
作者 孙嘉憶 王炜 俞丹 巨安奇 SUN Jiayi;WANG Wet;YU Dan;JU Anqi(College of Chemistry, Chemical Engineering and Biotechnology, Shanghai 201620, China;College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;Saintyear Holding Group Co., Ltd., Hangzhou 311221, China)
出处 《上海工程技术大学学报》 CAS 2018年第4期295-299,318,共6页 Journal of Shanghai University of Engineering Science
关键词 静电纺丝 超级电容器 四氧化三钴 水热法 电化学性能 electrospinning supercapacitor cobalt oxide(Co3O4 ) hydrothermal method electrochemical properties
  • 相关文献

参考文献5

二级参考文献44

  • 1王兴磊,何宽新,张校刚.层状Co_3O_4的制备及其电化学电容行为[J].无机化学学报,2006,22(6):1019-1022. 被引量:21
  • 2杨幼平,黄可龙,刘人生,王丽平,刘素琴,张平民.水热-热分解法制备棒状和多面体状四氧化三钴[J].中南大学学报(自然科学版),2006,37(6):1103-1106. 被引量:18
  • 3TIAN B Z, LIU X Y, YANG H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Adv Mater, 2003, 15: 1370-1374.
  • 4SALABAS E L, RUMPLECKER A J, KLEITZ F, et al. Exchange anisotropy in nanocasted Co3O4 nanowires [J]. Nano Lett, 2006, 6: 2977-2981.
  • 5WANG R M, LIU C M, ZHANG H Z, et al. Porous nanotubes of Co3O4: synthesis, characterization and magnetic properties[J]. Appl Phys Lett, 2004, 85: 2080-2082.
  • 6LI T, YANG S G, HUANG L S, et al. A novel process from cobalt nanowire to Co3O4 nanotube [J]. Nanotechnology, 2004, 15: 1479- 1482.
  • 7TIAN B Z, LIU X Y, YANG H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Adv Mater, 2003,15: 1370-1374.
  • 8SALABAS E L, RUMPLECKER F, KLEITZ F, et al. Exchange anisotropy in nanocasted Co3O4 nanowires [J]. Nano Lett, 2006, 6: 2977-2981.
  • 9HU L H, PENG Q, LI Y D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion [J]. J Am Chem Soc, 2008, 130: 16136-16137.
  • 10WANG J Q, DU G D, RONG Z, et al. Porous Co3O4 nanoplatelets by self-supported formation as electrode material for lithium-ion batteries [J]. Electrochim Acta, 2010, 55: 4805-4811.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部