期刊文献+

对苯二胺/石墨烯复合材料的制备及其电化学性能研究 被引量:1

Preparation and electrochemical properties of p-phenylenediamine/graphene composite
下载PDF
导出
摘要 以对苯二胺(PPD)为还原剂,采用一步水热法制备了对苯二胺/石墨烯(PRG)复合材料。研究了PPD用量对复合物形貌、层间距、以及电化学性能的影响。利用扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、X射线衍射(XRD)、傅里叶变红外光谱(FT-IR)和拉曼光谱(Raman)对PRG的结构及形貌等性质进行了表征,采用三电极系统测了试样品的的电化学性能。结果表明,PRG复合物中碳原子层的厚度为0.4nm,横向尺寸约为1μm,最大底面间距为0.944 125nm。复合物电极表现为双层电容器和赝电容器特征,比电容量为320.50F/g,经过1 000次循环后比容量保持率为92%。阻抗谱表明石墨烯与PPD复合后能很好促进电荷的迁移。 The PPD/Graphene complexe(PRG)was prepaerd by hydrothermal process with p-phenylenediamine(PPD)as reducer.The effects of PPD content on the morphology,interlayer spacing and electrochemical properties of compound were investigated.The properties of structure and morphology of the compound were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),atomic force microscope(AFM),X ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR)and Raman Spectra,and the electrochemical capability of the compound was tested by three electrode system.The results demonstrated that the thickness and the transverse size of graphene lay of the PRG are 0.4 nm and 1μm,and the maximum interlayer spacing of compound is 0.944125 nm.The composite electrode is characterized by double layer capacitor and pseudo capacitor with a specific capacitance of 320.50 F/g,and the specific retention rate is 92%after 1 000 cycles.The analyses of impedance spectra clearly indicated that compound was ideal than graphene in facilitating the migration/transfer of the charge.
作者 石凯 李孟宇 李巧玲 SHI Kai;LI Mengyu;LI Qiaoling(School of Science, North University of China, Taiyuan 030051, China)
机构地区 中北大学理学院
出处 《功能材料》 EI CAS CSCD 北大核心 2018年第12期12032-12038,共7页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51272239) 山西省回国留学人员科研资助项目(2014-重点6)
关键词 石墨烯 对苯二胺 水热法 电化学 赝电容性 graphene p-phenylenediamine hydrothermal electrochemical pseudo capacitor
  • 相关文献

参考文献3

二级参考文献157

  • 1张玲,梁鹏,黄霞,郑旭煦.生物阴极型微生物燃料电池研究进展[J].环境科学与技术,2010,33(11):110-114. 被引量:8
  • 2笪有仙.-[J].复合材料学报,1985,2(2):9-9.
  • 3Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 4Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Nano Lett. 2010, 10, 553.
  • 5Morell, E. S.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Phys. Rev. B 2010, 82, 121407.
  • 6Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 7Mermint, N. D. Phys. Rev. 1968, 176, 250.
  • 8Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Nano Res. 2008, 1,273.
  • 9Zhang, C. H.; Fu, L.; Zhang, Y. F.; Liu, Z. F. Acta Chim. Sinica 2013, 71, 308.
  • 10Ling, X.; Zhang, J. Acta Phys-Chim. Sin. 2012, 28, 2355.

共引文献168

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部