期刊文献+

一类重尾风险模型的有限时破产概率 被引量:1

Finite-Time Ruin Probability for a Kind of Heavy-Tailed Risk Models
下载PDF
导出
摘要 考虑一类随机收取保费的重尾风险模型.与经典的风险模型相比,该模型考虑了保费收取过程的随机性,因而能够更好地刻画保险公司的运营风险.在索赔额服从强次指数分布的条件下,得到了当保险公司的初始资本x趋近于无穷大时,保险公司在时刻t之前破产的有限时破产概率的渐近估计.该渐近结果对于时间t具有一致性. In this paper, a kind of heavy-tailed risk model with random premium is considered. Compared with that of the classical risk models, in this model, the randomness of the process in the charge for the premium is considered.Therefore, the operation risk of the insurance company can be better characterized. Under the condition that the claim-sizes have a strong subexponential distribution, the asymptotic estimation of the finite-time ruin probability before time t of the insurance company is derived when x, the initial capital of the insurance company tends to be infinity. The asymptotic results have uniformity for the time t.
作者 邢培培 于长俊 XING Peipei;YU Changjun(School of Sciences, Nantong University, Nantong 226019, China;Tongzhou Senior High School, Nantong 226300, China)
出处 《南通大学学报(自然科学版)》 CAS 2018年第3期55-59,共5页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11426139) 南通大学自然科学基金项目(13230041)
关键词 重尾分布 风险模型 破产概率 保费 渐近性 heavy-tailed distributions risk model ruin probability premium asymptotics
  • 相关文献

参考文献4

二级参考文献24

  • 1方世祖,罗建华.双复合Poisson风险模型[J].纯粹数学与应用数学,2006,22(2):271-278. 被引量:37
  • 2[1]Lundberg, F. , Forsakringsteknisk Riskutjamnihg[M]. F. Ehglunds Boktryckeri AB,Stockholm,1926.
  • 3[2]Gramer, H. , On the Mathematical Theory of Risk. Stockholm : Skandia Jubilee,1930.
  • 4[3]Bowers, N. L. , Gerber, H. U. ,Hickman J. C. , et al. , Actuarial Mathematics[M]. The Society of Actuaries, Itasca ,Illinois, 1997,399-430.
  • 5[10]Kaas, R. , Goovaerts, M. ,Dhaene, J. and Denuit, M. , Modern Actuarial Risk Theory. Kluwer Academic Publishers ,Dordrecht ,The Netherlands, 2001.
  • 6[11]Soren. Asmussen. Ruin Probabilities. World Scientific Publishing Co. Pte. Ltd. , Singapore,2000.
  • 7Lin, X.S., Willmot, G.E. and Drekic, S., The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 33(3) (2003), 551-566.
  • 8Yuen, K.C., Wang, G. and Li, W.K., The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier, Insurance: Mathematics and Economics, 40(1)(2007), 104-112.
  • 9De Finetti, B., Su un'impostazione alternativa dell teoria colletiva del rischio, Transactions of the XV Intervnational Congress of Actuaries, 2(1)(1957), 433-443.
  • 10Dickson, D.C.M. and Waters, H.R., Some optimal dividends problems, ASTIN Bulletin, 34(1)(2004), 49-74.

共引文献29

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部