期刊文献+

图的拟拉普拉斯矩阵特征值的界

The Bounds for Eigenvalues of Signless Laplacian Matrix of Graph
下载PDF
导出
摘要 该文根据图的顶点数、边数、最大度和最小度,利用矩阵的迹得出图的拟拉普拉斯矩阵特征值的界. In this paper,we obtain the bounds of eigenvalues of signless Laplacian matrices by using their traces in the terms of vertex number,edge number,maximum degree and minimum degree.
作者 郑学谦 ZHENG Xue-qian(College of Business,Shanxi University,Taiyuan 030031,China)
出处 《广西师范学院学报(自然科学版)》 2018年第4期30-32,共3页 Journal of Guangxi Teachers Education University(Natural Science Edition)
关键词 图的拟拉普拉斯矩阵 矩阵的迹 bound signless laplacian matrix of graph matrices trace
  • 相关文献

参考文献3

二级参考文献6

  • 1Grossman J W, Kulkarni D M. Algebaic graph theory without orientation[J]. Linear Algebra and Its Applications, 1994,212-213 ; 289-307.
  • 2Van Den Heuvel J. Hamilton cycles and eigenvalues of graphs[J]. Linear Algebra and its Applications,1995,226- 228:723-730.
  • 3Desai M, Rao V. A characterization of the smallest eigenvalue of a graph[J]. Journal of Graph Theory, 1994, 18(2):181-194.
  • 4Zhang Xiaodong, Luo Rong. The Laplacian eigenvalues of mixed graphs[J]. Linear Algebra and its Applications, 2003,362 : 109-119.
  • 5Ellingham M N, Zha Xiaoya. The spectral radius of graphs on surface[J]. Journal of Combinatorial Theory, Series B,2000,78:45-56.
  • 6张晓东,李炯生.ON THE κ-th LARGEST EIGENVALUE OF THE LAPLACIAN MATRIX OF A GRAPH[J].Acta Mathematicae Applicatae Sinica,2001,17(2):183-190. 被引量:2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部