期刊文献+

用函数变换证明无穷级数恒等式 被引量:1

Infinite Series Identities Constructing by Function Transformation
下载PDF
导出
摘要 选取无理函数,利用复变函数的留数基本定理和Mittag-Leffier展开定理证明几个不同形式的无穷级数恒等式. Using irrational function and residues theorem of Cauchy and Mittag-Leffier’s expansion theorem, obtain several new identities of infinite series.
作者 张来萍 ZHANG Laiping(Department of Basic, Yinchuan Energy College, Yinchuan 750105, China)
出处 《河南教育学院学报(自然科学版)》 2018年第4期8-17,共10页 Journal of Henan Institute of Education(Natural Science Edition)
基金 宁夏高校科研基金项目(NGY2017253)
关键词 无理函数 留数 无穷级数 展开定理 恒等式 irrational function residue infinite series expansion theorem identity
  • 相关文献

参考文献5

二级参考文献22

  • 1Lehmer D H. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly, 1985, 7: 449-457.
  • 2Sury B. Tianning Wang, and Feng-Zhaen Zhao,Some identities involving of. binomial coefficients[J].J. integer Sequences, 2004, 7(2): 2-12.
  • 3Solo A. general properties involving reciprocal of Binomial coefficients[J]. Journal of integral se- quences, 2006, 9(4): 1-13.
  • 4Amghibech S. On sum involving Binomial coefficient[J]. Journal of integer sequences, 2007, 7(2): 1-17.
  • 5Jin-Hua Yang and Feng-zhen Zhao,Sums involving the inverses of binomial coefficients[J]. Journal of integer Sequences, 2006, 9(6): 1-11.
  • 6Trif T. combinatorial sums and series involving inverses of binomial coefficients[J]. Fibonacci Quar- terly, 2000, 38(1): 79-84.
  • 7Borwein J M, and Girgensohn R. evaluation of binomial series[J]. Aequationens Math, 2005, 70: 25-36.
  • 8R.Sprugnoli,sums of reciprocal of the central binomial coefficients, integral[J], electronic Journal of combinatorial number theory, 2006, 6: 1-18.
  • 9Jolley L B W.Summation of Series[M].second revised edition Dover Publications Inc New York,1961:156-159.
  • 10Sofo A.Computation Techniques for the Summation of Series[M].Kluwer Academic Plenum Publishers,2003:123.

共引文献23

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部