期刊文献+

利用线性回归分类算法的人脸识别方法

A Face Recognition Method Using Linear Regression Classification Algorithm
下载PDF
导出
摘要 针对人脸识别中存在的连续遮挡问题,笔者提出了一种利用线性回归分类算法的人脸识别新方法。首先,开发了一个线性模型,表示探针图像为特定类图库的一个线性组合。然后,对所有类模型的给定进行了探究,并且该决策是以有利于类的最小重建误差为规则。最后,对于连续遮挡问题,提出了一个模块化线性回归分类(LRC)方法进行分类识别,提出的LRC算法落入最近子空间分类。在人脸识别文献中的一些典型评估协议中,该算法在ORL人脸数据库上与集中先进算法进行评估。实验结果证明,提出的方法取得了98.75%的最高识别成功率。 Aiming at the continuous occlusion problem in face recognition,a new face recognition method based on linear regression classification algorithm is proposed.First,a linear model was developed to represent the probe image as a linear combination of a particular class library.Then a given probe for all class models,and the decision is based on a minimum reconstruction error that favors the class.Finally,for the continuous occlusion problem,a modular linear regression classification(LRC)method is proposed for classification and recognition,and the proposed LRC algorithm falls into the nearest subspace classification.In some typical evaluation protocols in the face recognition literature,the algorithm is evaluated on the ORL face database with a centralized advanced algorithm.The experimental results show that the proposed method achieves the highest recognition success rate of 98.75%.
作者 热娜.吐尔地 Tuerdi·Rena(College of Transport Management, Xinjiang Vocational & Technical College of Communications, Ur umqi Xinjiang 831401, China)
出处 《信息与电脑》 2019年第1期75-76,共2页 Information & Computer
关键词 人脸识别 线性模型 最近子空间 face recognition linear model nearest subspace
  • 相关文献

参考文献4

二级参考文献39

  • 1罗翌陈,杨辉华,李灵巧,翟雷.SIFT算法在CUDA加速下的实时人物识别与定位[J].计算机科学,2012,39(S3):391-394. 被引量:11
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 3白雪飞,李茹.基于2DPCA和RBF神经网络的人脸识别方法[J].计算机工程与应用,2007,43(34):200-203. 被引量:9
  • 4Turk M, Pentland A. Eigenfaces for Recognition [ J ]. Journal of Cognitive Neuroscience, 1991,3( 1 ) :71-86.
  • 5Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisher-faces : Recognition Using Specific Linear Projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 ( 7 ) : 711-720.
  • 6Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science, 2000,290 ( 5500 ) :2323-2326.
  • 7Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [ J ]. Science ,2000,290 (5500) :2319-2323.
  • 8He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recogition Using Laplacianfaces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 3 ) :328-340.
  • 9Yang Jian, Zhang Lei, Yang Jingyu, et al. From Classifier to Discriminators: A Nearest Neighbor RuleIntroduced Discriminant Analysis [J ]. Pattern Reco- gnition ,2011,44 ( 7 ) : 1387-1402.
  • 10Scholkopf B,Smola A,Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalues Problem[J]. Neural Computation ,1998,10( 5 ) : 1299-1319.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部