期刊文献+

基于SIFT算法的多变背景目标识别 被引量:1

Variable Background Target Recognition Based on SIFT Algorithm
下载PDF
导出
摘要 针对多变背景下目标识别的复杂性和多样性,利用尺度不变特征变换提取特征点,采用近邻法进行特征匹配,通过调整阈值,提高特征匹配的准确率。通过实验验证,在一定的阈值范围内进行特征匹配,近邻法能够有效保证正确的匹配数量,提高目标识别的稳定性与可靠性,并在多变背景下精确识别目标,具有较好的鲁棒性。基于此,展开具体论述。 Aiming at the complexity and diversity of target recognition in the changeable background,feature points are extracted by scale invariant feature transformation,and feature matching is carried out by using the nearest neighbor method.The accuracy of feature matching is improved by adjusting the threshold.The experimental results show that the nearest neighbor method can effectively guarantee the correct number of matches,improve the stability and reliability of target recognition,and accurately identify the target in the changeable background.It has good robustness.Based on this,the specific discussion is carried out.
作者 赵一骜 崔虎 Zhao Yiao;Cui Hu(Yanbian University, Yanji Jilin 133002, China)
机构地区 延边大学
出处 《信息与电脑》 2019年第1期85-87,共3页 Information & Computer
关键词 尺度不变特征变换 阈值 特征匹配 scale invariant feature transformation thresholds feature matching
  • 相关文献

参考文献1

二级参考文献16

  • 1LOW[D. Distinctive image features from scale-in- variant keypoints, cascade filtering approach [J]. International Journal of Computer Vision 2004, 60(2) : 91-110.
  • 2YANG J C, YU K, GONG Y H, etal. Linear spatial pyramid matching using sparse coding for image classification EC]. IEEE Conference on Com- puter Vision and Pattern Recognition, 2009, 1794- 1801.
  • 3ROSTEN E, PORTER R, DRUMMOND T. Fas ter and better: a machine learning approach to cor ner detection [J]. IEEE Transaction on Pattern A nalysis and Machine Intelligence, 2010, 32 (1) 105-119.
  • 4KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptor C]. Proceedings of IEEE International Confer- ence on Computer Vision and Pattern Recognition, 2004,2:506-513.
  • 5CHARIOT A, KERIVEN R. GPU-boosted online image matching [C]. in Proceeding of the 19th Conference on Pattern Recognition, 2008, 1-4.
  • 6SILPA-ANAN C, HARTLEY R. Optimised KD- trees for fast image descriptor matching [C]. in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, 2008, 1-8.
  • 7FARAJ A, DANIJELA R D, AXEL G. Speeded up image matching using split and extended SIFT features -C2. Proceedings of the 5th Internation- al Conference on Computer Vision Theory and Applications (VISAPP 2010), 2010, 287-295.
  • 8DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]. IEEE Com- puter Society Conference on Computer Society, CVPR 2005, 886-893.
  • 9SABDI A, HASH[MI H, NADER E S. On the PDF of the sum of random vectors [J]. IEEE Transactions on Communications, 2000, 48 (1) 7-12.
  • 10Assistantrobot FRIENDIII[EB/OL]. [2014-01-16] http://www, iat. uni-bremen, de/sixcms/detail. php? id=555.

共引文献27

同被引文献7

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部