期刊文献+

固溶体MAX相(Ti_(0.5)V_(0.5))_3AlC_2的制备及其对MgH_2储氢性能的催化影响 被引量:3

Synthesis and Catalytic Effects of Solid-Solution MAX-phase(Ti_(0.5)V_(0.5))_3AlC_2 on Hydrogen Storage Performance of MgH_2
下载PDF
导出
摘要 通过无压烧结法制备了固溶体MAX相(Ti_(0.5)V_(0.5))_3AlC_2,研究了其添加对MgH_2储氢性能的影响。结果发现,固溶体MAX相(Ti_(0.5)V_(0.5))_3AlC_2中的Ti和V元素通过协同作用,呈现出更高的催化活性。添加质量分数10%(Ti_(0.5)V_(0.5))_3AlC_2的MgH_2样品的起始放氢温度为230℃,较原始MgH_2降低了60℃。在275℃下等温放氢,(Ti_(0.5)V_(0.5))_3AlC_2添加样品的放氢速率可达0.35%·min^(-1),是原始MgH_2样品的4倍左右。此外,完全放氢后的MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2样品在150℃、5 MPa氢压下,可在60 s内吸收4.7%的氢。计算显示,MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2样品的表观活化能为79.6 kJ·mol^(-1),较原始MgH_2(153.8 kJ·mol^(-1))降低了48%,这是MgH_2放氢性能得到改善的主要原因。 A solid-solution MAX phase (Ti0.5V0.5)3AlC2 was successfully synthesized with a pressureless sintering method, and its catalytic effect on hydrogen storage reaction of MgH2 was systematically investigated. The solid solution MAX phase (Ti0.5V0.5)3AlC2 exhibited superior catalytic activity, thanks to the synergistic catalysis effect of Ti and V. The on-set dehydrogenation temperature of MgH2-10%(Ti0.5V0.5)3AlC2 samples was only 230 ℃(mass fraction of (Ti0.5V0.5)3AlC2 was 10%), which was 60 ℃ lower than that of pristine MgH2. The desorption rate of MgH2-10%(Ti0.5V0.5)3AlC2 sample at 217 ℃ was calculated to be 0.35%·min^-1, which was 4 times faster than that of the pristine sample. At 150 ℃, the dehydrogenated MgH2-10%(Ti0.5V0.5)3AlC2 sample absorbs 4.7% of H2 within 60 s under 5 MPa H2. The apparent activation energy of the MgH2-10%(Ti0.5V0.5)3AlC2 sample was determined to be 79.6 kJ·mol^-1, representing a 48% reduction in the reaction barrier, compared with pristine MgH2 (153.8 kJ·mol^-1). This reasonably explains the significant improvement in dehydrogenation performance.
作者 张欣 沈正阳 简旎 姚建华 高明霞 潘洪革 刘永锋 ZHANG Xin;SHEN Zheng-Yang;JIAN Ni;YAO Jian-Hua;GAO Ming-Xia;PAN Hong-Ge;LIU Yong-Feng(Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Hangzhou 310014, China;State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2019年第1期101-108,共8页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51671172 U1601212) 浙江省杰出青年科学基金(No.LR16E010002)资助项目
关键词 储氢材料 金属氢化物 MgH2 催化剂添加 固溶体MAX相 hydrogen storage materials metal hydride MgH2 catalyst doping solid-solution MAX phase
  • 相关文献

参考文献3

二级参考文献14

  • 1李志尊,韩凤起,雷永泉.储氢电极合金的温度特性研究[J].军械工程学院学报,2001,13(1):55-59. 被引量:10
  • 2Yoshida A,Material Integration in Japanese,2001年,2卷,35页
  • 3Sato T,Materials Integration,2001年,2卷,39页
  • 4Shangguan W,Solar Energy Mater Solar Cells,2001年,69卷,189页
  • 5Shangguan W,Energy and Environment Proc Int Conf Energy and Environmental,1998年,463页
  • 6胡子龙.储氢材料[M].北京:化学工业出版社,2002.91-92.
  • 7Nohara S,Fujita N,Zhang S G,et al.[J].J Alloys Comp,1998,267:76-78.
  • 8Liu Weihong,Wu Haoqing,Lei Yongquan,et al.[J].J Alloys Comp,1997,261:289-294.
  • 9Iwakura C,Nohara S,Zhang S G,et al.[J].J Alloys Comp,1999,258:246-249.
  • 10Liu Weihong,Lei Yongquan,Wu Jing,et al.[J].Int J Hydrogen Energy,1997,22 (10/11):999-1003.

共引文献103

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部