期刊文献+

基于有向网络的人物信息诱发脑电信号特征

EEGs Feature Induced by Person's Information Based on Directed Network
下载PDF
导出
摘要 基于熟人和陌生人的视听觉信息,通过记录对应的脑电信号,对大脑在熟人和陌生人信息刺激下的认知机制展开研究.首先,通过记录被试在视听刺激下的脑电信号,得到对应不同刺激下的事件相关脑电位.通过计算不同导联间的相位传递熵构建有向功能网络,最后对重点网络参数进行分析.结果表明,相比陌生人信息诱发的有向网络,熟人信息诱发网络中关键节点的作用加强,网络聚集能力增强;熟人信息诱发网络的连接更加趋向于全脑化,不同脑区间的信息交换加强,整个网络结构更有利于完成对熟人信息的识别. Based on the visuo-auditory information of acquaintances and strangers, the possible differences of the cognitive mechanisms were studied by recording EEG signals.Firstly, the ERP signals for different stimuli types were obtained by recording the EEG signals of visuo-auditory stimuli.Then, the directed functional network was constructed by calculating the phase transfer entropy.Finally, network parameters for the key connection were analyzed.The results show that compared with the directed network induced by unfamiliar information, the role of key nodes in the network of familiar information is strengthened, as well as the aggregation ability.The connections of the familiar network tend to be more global, and the information exchange between different brain regions are increased, which is good for the identification of the familiars.
作者 常文文 王宏 化成城 王翘秀 CHANG Wen-wen;WANG Hong;HUA Cheng-cheng;WANG Qiao-xiu(School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第1期1-5,31,共6页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51405173) 辽宁省创新团队项目(LT2014006)
关键词 脑电信号 事件相关脑电 有向功能网络 相位延迟熵 视听觉刺激 熟人和陌生人识别 EEG(electroencephalogram) event related potential(ERP) directed functional network phase lag entropy visuo-aduitory stimulus familiar and unfamiliar recognition
  • 相关文献

参考文献4

二级参考文献134

  • 1薛建中,闫相国,郑崇勋.用核学习算法的意识任务特征提取与分类[J].电子学报,2004,32(10):1749-1753. 被引量:10
  • 2Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia. Neurolmage, 2009, 47:S157.
  • 3Vaessen M J, Jansen J F, Hofman P A, et al. Impaired small-world structural brain networks in chronic epilepsy. Neurolmage, 2009, 47: S113.
  • 4Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13:5-14.
  • 5Stam C J. From synchronization to networks: Assessment of functional connectivity in the brain. In: Perez Velazquez J L, Richard W, eds. Coordinated Activity in the Brain, vol 2. Berlin Heidelberg: Springer-Verlag, 2009.91-115.
  • 6Stephan, Hilgetag K E, Burns C C, et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci, 2000, 355:111-126.
  • 7Micheloyannis S, Pachou S, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273-277.
  • 8Micheloyannis S, Vourkas S, Tsirka M, et al. The influence of ageing on complex brain networks: A graph theoretical analysis. Hum Brain Mapp, 2009, 30:200-208.
  • 9Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol, 2007, 118:449-456.
  • 10Dimitriadis S I, Laskaris N A, Del Rio-Portilla Y, et al. Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr, 2009, 22:119-133.

共引文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部