摘要
发散思维是创新思维的最主要特点,一题多解能够培养学生的发散思维能力。利用凑微分法、分部积分法、换元法等给出了2018年全国硕士研究生入学考试一道数学试题的6种解法。以此引导学生深入地探索问题,培养学生的创造性思维能力。
Divergent thinking is innovative thinking's main characteristic,one problem with multiple solutions can cultivate students'divergent thinking ability.Using the improvising differentiation,integration by parts,and integration by substitution,there are six methods to a math problem in 2018 Postgraduate Entrance Examination.Thus this paper hopes to lead students to explore problems more deeply and cultivate students'creative thinking ability.
作者
崔静静
赵思林
CUI Jing-jing;ZHAO Si-lin(School of Mathematics and Information Science,Neijiang Normal University,Neijiang,Sichuan 641112)
出处
《西昌学院学报(自然科学版)》
2018年第4期54-56,共3页
Journal of Xichang University(Natural Science Edition)
基金
教育部“本科教学工程”四川省地方属高校本科专业综合改革试点项目--内江师范学院数学与应用数学“专业综合改革试点”项目(ZG0464)
四川省“西部卓越中学数学教师协同培养计划”项目(ZY16001)
内江师范学院2016年度校级学科建设特色培育项目(T160009,T160010,T160011)
关键词
考研试题
一题多解
换元法
不定积分
Postgraduate Entrance Examination
one question with multiple solutions
integration by substitution
indefinite integral