期刊文献+

锡青铜超疏水表面纳秒激光制备及润湿性转变机理研究 被引量:5

Preparing Tin Bronze Substrate Superhydrophobic Surface with Nanosecond Laser and Investigating its Wettability Transition Mechanisms
下载PDF
导出
摘要 以锡青铜为基底,研究采用纳秒紫外激光代替飞秒激光制备金属超疏水表面的方法。通过改变激光加工参数制备了不同表面微观结构,并采用扫描电子显微镜和接触角测量仪对所制备的微观结构和润湿性进行了表征,通过X射线光电子能谱(XPS)分析了所制备的样片表面化学元素含量及其随时间的演变,对润湿性转变的机理进行了解释。研究结果表明,采用纳秒紫外激光可以在锡青铜基底制备类似飞秒激光加工得到的金属超疏水表面;激光加工后的样片润湿性随时间变化,转变机理是激光加工过程中生成的CuO在磷元素的催化脱氧作用下生成了本征疏水的Cu2O;在紫外激光能量密度为5.61 J/cm2下,激光扫描速度100 mm/s时,所制备的表面具有微纳复合结构的表面接触角超过150°,滚动角小于10°。 This paper presents the preparation of the tin bronze substrate superhydrophobic metallic surface with the nanosecond ultraviolet(UV)laser instead of femtosecond laser.The surfaces with different microstructures were prepared by changing laser processing parameters.The microstructure and wettability of the prepared surfaces have been characterized by the scanning electron microscopy and the contact angle measurement system.The content of chemical elements in the prepared surfaces have been analyzed by using the X-ray photoelectron spectroscopy.On this basis,the mechanisms of change in the wettability on the prepared surfaces over time is explained.The analysis results show that the superhydrophobic metallic surfaces on the tin bronze substrate should be prepared,using the nanosecond UV laser similar to the femtosecond laser.The wettability on the laser processed surfaces changes over time and the mechanisms of wettability change are due to the fact that the CuO formed during laser processing has been transformed to Cu2O under the catalytic deoxygenation of the phosphorus element in the tin bronze.With the UV laser energy density of 5.61 J/cm 2 and the laser scanning speed of 100 mm/s,the static contact angle on the prepared metallic surface with dual scale micro-nanostructures is more than 150°and the contact angle hysteresis is less than 10°.
作者 蔡兴兴 王权岱 李鹏阳 侯晓莉 李言 Cai Xingxing;Wang Quandai;Li Pengyang;Hou Xiaoli;Li Yan(School of Mechanical and Precision Instrument Engineering,Xi′an University of Technology,Xi′an 710048,China)
出处 《机械科学与技术》 CSCD 北大核心 2019年第2期224-229,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51775431 51675422 51375381)资助
关键词 纳秒激光 锡青铜 超疏水表面 润湿性转变 nanosecond laser tin bronze superhydrophobic surface wettability transition
  • 引文网络
  • 相关文献

参考文献1

二级参考文献41

  • 1郭瑞生,魏强兵,吴杨,胡海豹,周峰,薛群基.材料表面润湿性调控及减阻性能研究[J].摩擦学学报,2015,35(1):23-30. 被引量:10
  • 2潘育松,熊党生.聚乙烯醇水凝胶的生物摩擦学研究进展[J].摩擦学学报,2006,26(2):188-192. 被引量:18
  • 3T Young. An essay on the cohesion of fluidsp[J]. Phil Trans R Soc Lond, 1805, 95: 65-87.
  • 4X Lu, M M Khonsari, E R M Gelinck. The stribeck curve: experimental results and theoretical prediction[J]. J Tribol, 2006, 128: 789-794.
  • 5Chen M, Briscoe W H, Armes S P, et al. Lubrication at physiological pressures by polyzwitterionic brushes[J]. Science, 2009, 323(5922): 1698-1701.
  • 6Klein J. Shear, friction, and lubrication forces between surfaces polymer-bearing surface[J]. Annu Rev Mater Sci, 1996, 26: 581-612.
  • 7Chen M, Briscoe W H, Armes S P, et al. Polyzwitterionic brushes: Extreme lubrication by design[J]. European Polymer Journal, 2011, 47(4): 511-523.
  • 8Gong J and Osada Y. Gel friction: A model based on surface repulsion and adsorption[J]. The Journal of Chemical Physics, 1998, 109(18): 8062-8068.
  • 9Kaneko D, Tada T, Kurokawa T, et al. Mechanically strong hydrogels with ultra-low frictional coefficients[J]. Advanced Materials, 2005, 17(5): 535-538.
  • 10Gong J. Friction and lubrication of hydrogels?Its richness and complexity[J]. Soft Matter, 2006, 2(7): 544-552.

共引文献18

同被引文献44

引证文献5

二级引证文献6

;
使用帮助 返回顶部