期刊文献+

初中生数学学科素养测评的实证研究——以北京市T区八年级为例 被引量:5

The Empirical Research on Mathematics Key Competence of Students in Junior High School——Taking the Eighth Grade of Beijing T District for Example
下载PDF
导出
摘要 基于"学习理解""实践应用""创造迁移"3个认知维度、9个子维度开发了数学学科素养测试工具,并对北京市T区八年级的4262名学生进行测试。研究发现:学生仅"运算素养"表现高于总体素养的平均水平,其他四大素养都低于总体平均水平,并且各大素养彼此显著相关,但"数据处理素养"与其他数学素养相关性微弱;从内容维度来看,学生在三大内容领域的表现之间都存在显著差异,"统计与概率"和"图形与几何"上的表现之间差异最大;从认知维度来看,学生仅在"学习理解"和"创造迁移"的表现之间存在显著性差异;从情境维度来看,学生在三种情境上的表现虽有不同,但三者之间并不存在统计意义上的显著性差异。八年级正好处于义务教育的承上启下阶段,其数学核心素养的培育应注重养成学生数学建模等高层次的数学思维能力,在课堂中创设问题情境,在问题解决中培养学生的创造力与创造性思维。 Based on the three cognitive dimensions and the nine sub -dimensions of “learning comprehension” “practical application” “creative migration”,the researchers developed a math key competence test tool and tested 4262 students in the eighth grade of Beijing T District. The study found that: students only performed higher “operational competence”than the average level of the overall competence,and the other four competences were lower than the overall average,and the major competence were significantly related to each other,but the “data processing competence” was weakly related to other mathematical competences. From the view of content dimension,there are significant differences in the students’performance of the three major content areas. The difference between “statistics and probability”and“graphics and geometry”is the largest. From the view of cognitive dimension,there is a significant difference between the students’learning and understanding and creation migration. From view of situational dimension,though students have different performances in the three situations,there is no statistically significant difference between the three. The eighth grade is just at the connecting stage of the obligation education,which means that the cultivation of mathematics key competence should be focused on the development of high level of mathematics modeling,problemsituations should be created in class,and students’creativity and creative thinking should be developed in problem solving.
作者 徐柱柱 张迪 綦春霞 Xu Zhuzhu;Zhang Di;Qi Chunxia
出处 《教育测量与评价》 2019年第1期53-58,61,共7页 Educational Measurement and Evaluation
基金 北京师范大学未来教育高精尖创新中心项目"中学数学学科诊断分析工具开发与应用研究"(课题批准号:BJAICFE2016SR-008)的资助
关键词 八年级 数学 核心素养 测评框架 区域测评 the eighth grade mathematics key competence assessment framework regional assessment
  • 相关文献

二级参考文献59

  • 1王兄.数学问题解决研究综述[J].广西师范大学学报(哲学社会科学版),2000,36(S2):188-191. 被引量:6
  • 2林崇德.论学科能力的建构[J].北京师范大学学报(社会科学版),1997(1):5-12. 被引量:150
  • 3郭衎,曹鹏,杨凡,刘金花.基于课程标准的数学学科能力评价研究——以某学区七年级测试工具开发及实施为例[J].数学教育学报,2015,24(2):17-21. 被引量:17
  • 4傅赢芳,张维忠.中英初中数学教材中应用题的情境文化性[J].外国中小学教育,2007(2):29-32. 被引量:10
  • 5Brenner M E, Herman S, Ho H Z, &Zimmer J M. Cross national comparison of representational competence. Journal for Research in Mathematics Education, 1999, 30(5): 541-557.
  • 6Cai J. Cognitive analysis of US and Chinese students' mathematical performance on tasks involving computation, simple problem solving, and complex problem solving (Monograph 7, Journal for Research in Mathematics Education). Reston, VA: National Council of Teachers of Mathematics, 1995.
  • 7Cai J. Beyond computation and correctness; Contributions of open-ended tasks in examining US and Chinese studentsr mathematical performance. Educational Measurement : Issuesand Practice, 1997, 16(1): 5-11.
  • 8Cai J. An investigation of US and Chinese studentst mathematical problem posing and problem solving. Mathematics Education Research Journal, 1998, 10(1) : 37-50.
  • 9Cai J. Mathematical thinking involved in US and Chinese students' solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2000, 2 (4): 309-340.
  • 10Cai J, Silver E A. Solution processes and interpretations of solutions in solving a division-with-remainder story problem: Do Chinese and US students have similar difficulties Journal for Research in Mathematics Education, 1995, 26 (5) : 491-496.

共引文献357

同被引文献52

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部