摘要
本文主要研究在空间异质环境下一个Lotka-Volterra带交错扩散项的方程组.通过细致的谱分析和线性化稳定性理论,证明了该Lotka-Volterra交错扩散方程组的分岔平衡解是局部渐近稳定的.
We investigate a Lotka-Volterra model with cross diffusion in a spatially heterogeneous environment.Through the detailed spectral analysis and linearized stability theory,we prove that the bifurcating solution of the Lotka-Volterra system with cross diffusion is locally asymptotically stable.
作者
徐茜
赵烨
杨玉洁
Xu Qian;Zhao Ye;Yang Yujie(Department of Basic Courses,Beijing Union University,Beijing 100101,China;Department of Mathematics and Physics,Beijing Institute of Petrolchemical Technology,Beijing 102617,China)
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期7-11,共5页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金(11501031
11471221
11601030)
关键词
分岔解
谱分析
稳定性
bifurcating solution
spectral analysis
stability