期刊文献+

新型无人机图像序列压缩与重构算法 被引量:3

New Image Sequence Compression and Reconstruction Algorithm for UAV
下载PDF
导出
摘要 针对无人机图像序列帧间相关性强的特点,提出了一种基于压缩感知的无人机图像序列压缩与重构算法。在编码端生成每幅图像的随机测量值和飞行参数,通过数据链路传输至地面站解码端。在解码端,通过分析摄像机与物体间的几何关系建立了运动估计模型,从而减少了图像间的冗余。去相关后的图像更稀疏,重构也更容易,并且重构后图像具有更高质量。试验结果表明,该算法不仅可以提高重构图像的峰值信噪比(PSNR),且有效降低了编码端的工作时间,具有较好的实时性。该算法计算复杂度低,硬件实现较简单,适用于无人机系统。 Aimed at the characteristic of the strong inter-frame correlation of unmanned aerial vehicle(UAV)image sequences,a compression and reconstruction algorithm for UAV image sequences based on compressed sensing is proposed.Random measurements and flight parameters of each image are generated at the encoder,and are transmitted over the data link to the ground station decoder.At the decoder,by analyzing the geometric relationship between the camera and the object,a motion estimation model is established.Thus,the redundancies between images are reduced.The de-correlated image is sparser,the reconstruction is easier,and the reconstructed image has higher quality.The experimental results show that the algorithmcan improve the peak signal to noise ratio(PSNR)of the reconstructed image,and theworking time of the encoder is effectively reduced.The algorithmhas better real-time performance.Due to the low computational complexity,the hardware implementation of the algorithm is simpler and suitable for UAV systems.
作者 黄大庆 马俊杰 徐喜梅 HUANG Daqing;MA Junjie;XU Ximei(Key Laboratory of Small and Medium-Sized UAV Advanced Technology,Ministry of Industry andInformation Technology,Nanjing 210007,China;School of Electronic Inform ation Engineering,Nanjing University of A eronautics and Astro nautics,Nanjing 210007,China)
出处 《指挥信息系统与技术》 2018年第6期1-5,共5页 Command Information System and Technology
基金 国家重点研发计划(2017YFC0822404) "十三五"陆装预研基金 中央支持地方高校基本业务科研(56XZA18010)资助项目
关键词 图像序列 无人机 压缩感知 运动估计 图像重构 image sequence unmanned aerial vehicle(UAV) compressed sensing(CS) motion estimation image reconstruction
  • 相关文献

参考文献6

二级参考文献140

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献749

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部