期刊文献+

磺酸苯偶氮石墨烯材料对重金属离子的吸附性能

Adsorption of heavy metal ions in water by4-chloro-3-sulfophenylazo graphene materials
下载PDF
导出
摘要 将4-氯苯胺-3-磺酸接枝到RGO表面,合成新型苯偶氮功能化还原氧化石墨烯材料(RGOSPA),吸附水体中的Pb(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)。实验显示RGOSPA吸附Pb(Ⅱ)和Cu(Ⅱ)溶液的最佳p H值为5. 0,吸附Ni(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)的最佳p H值为5. 5,对Pb(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量分别为457. 4,60. 1,63. 7,186. 2,116. 1 mg/g。吸附动力学研究表明,RGOSPA在10 min达到平衡吸附量的80%,吸附过程符合准二级动力学方程。吸附等温线研究表明,与Freundlich模型相比,Langmuir模型更适合描述吸附过程。RGOSPA通过离子交换与配位达到对重金属离子的吸附效果,可作为去除重金属离子的良好吸附剂。 The synthesis of new sulfophenylazo reduced graphene oxide( RGOSPA) by grafting 4-chloro-3-sulfonic acid onto RGO surface by diazotization reaction and the adsorption properties of new materials were studied. The adsorption characteristics of Pb( Ⅱ),Cu( Ⅱ),Ni( Ⅱ),Cd( Ⅱ) and Cr( Ⅲ) in water show that the optimum pH value of adsorption Pb( Ⅱ) and Cu( Ⅱ) solutions were 5,and the best pH value for Ni( Ⅱ),Cd( Ⅱ) and Cr( Ⅲ) adsorption were 5. 5. The maximum adsorption capacity of RGOSPA for Pb( Ⅱ),Cu( Ⅱ),Ni( Ⅱ),Cd( Ⅱ) and Cr( Ⅲ) were 457. 4,60. 1,63. 7,186. 2,116. 1 mg/g,respectively. The adsorption kinetics showed that RGOSPA reached 80% of the equilibrium adsorption capacity in10 min,and the adsorption process conformed to the pseudo-second-order kinetic equation. The adsorption isotherm shows that Langmuir model is more suitable for describing adsorption process than Freundlich model. RGOSPA can adsorb heavy metal ions through ion exchange and coordination,and can be used as a good adsorbent for heavy metal ions removal.
作者 柏源 陈斌 张超智 BAI Yuan;CHEN Bin;ZHANG Chao-zhi(Guodian Science and Technology Research Institute,Nanjing 210023,China;School of Environment Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《应用化工》 CAS CSCD 北大核心 2018年第12期2624-2629,共6页 Applied Chemical Industry
基金 国家自然科学基金(11305091) 教育部回国人员科研启动基金(2013S010) 江苏省六大人才高峰(R2015L12)
关键词 还原氧化石墨烯 吸附 离子交换 配位 重金属离子 reduced graphene oxide adsorption ion exchange coordination heavy metal ions
  • 相关文献

参考文献2

二级参考文献37

  • 1Lehmann J, Joseph S. Biochar for Environmental Man- agement: Science and Technology [M]. London: Earthscan, 2009: 33-52.
  • 2Boehm H P, Diehl E, Heck W, et al. Surface Oxides of Carbon[J]. Angew Chem Int Ed, 1964, 3 (10) :669 - 677.
  • 3Xiao Feng, Howard Huang Juchang. Comparison of Biosorbents with Inorganic Sorbents for Removing Copper(11) from Aqueous Solutions [J]. J Environ Manage, 2009, 90(10): 3105-3109.
  • 4Liu Zhengang, Zhang Fushen. Removal of Lead from Water Using Biochars Prepared from Hydrothermal Liquefaction of Biomass [J]. J Hazard Mater, 2009, 167(1/2/3) : 933 - 939.
  • 5Langmuir I. The Adsorption of Gases on Plane Surfaces ofGlass, MicaandPlafinum[J].JACS, 1918, 40(9) : 1361 - 1403.
  • 6King P, Rakesh N, Beena Lahari S, et al. Biosorption of Zinc Onto Syzygium cumini L. : Equilibrium and Kinetic Studies[J]. ChemEngJ, 2008, 144(2) : 181 - 187.
  • 7BACIOCCHI R, BERARDI S, VERGINELLI I. Human health risk assessment: Models for predicting the effective exposure duration of on- site receptors exposed to contaminated groundwater[J ]. Journal of Hazardous Materials, 2010, 181 (1/3) : 226-233.
  • 8FU F, WANG Q. Removal of heavy metal ions from wastewaters : A review [ J ]. Journal of Environmental Management, 2011, 92 (3) : 407- 418.
  • 9SITKO R, TUREK E, ZAWISZA B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide [ J ]. Dalton Trans, 2013, 42(16) : 5682-5689.
  • 10GEREL 0, GER(EL H F. Adsorption of lead( II ) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida[J]. Chemical Engineering Journal, 2007, 132(1-3) : 289-297.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部