期刊文献+

捕食者无密度制约的HollingⅢ型捕食系统的定性分析

Qualitative Analysis of Holling Ⅲ Predator-prey System without Density Restriction on Predators
下载PDF
导出
摘要 研究食饵种群具有Logistic型密度制约但捕食者种群无密度制约的HolingⅢ型捕食系统,利用等倾线的基本性质,分析了正平衡点的存在性,通过构造Lyapunov函数给出了系统的全局渐近稳定性的充分条件,采用Bendixson环域定理和张芷芬极限环唯一性定理,证明了该系统在某一特定的条件下存在唯一稳定的极限环,最后利用Matlab通过数值模拟验证了理论分析的合理性. In this paper,we study the predator-prey system of Holling Ⅲ with logistic density constraints but without density constraints of predator population.By using the basic properties of isocline,we analyze the existence of positive equilibrium points.By constructing Lyapunov function,we give sufficient conditions for the global asymptotic stability of the system.By using Bendixson’s ring field theorem and Zhang Zhengfen’s limit cycle uniqueness theorem,we prove that the system has a unique stable limit cycle under certain conditions.Finally,the rationality of the theoretical analysis in this paper is verified by numerical simulation using Matlab.
作者 冯宇星 FENG Yu-xing(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《兰州文理学院学报(自然科学版)》 2019年第1期15-18,25,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 HollingⅢ型捕食系统 全局渐近稳定性 极限环 Matlab HollingⅢpredator-prey system global asymptotic stability limit cycles Matlab
  • 相关文献

参考文献3

二级参考文献20

  • 1陈凤德,陈晓星,张惠英.捕食者具有阶段结构Holling Ⅱ类功能性反应的捕食模型正周期解的存在性以及全局吸引性[J].数学物理学报(A辑),2006,26(1):93-103. 被引量:29
  • 2张娟,马知恩.一类具有HollingⅡ类功能反应且两种群均有密度制约项的捕食系统极限环的唯一[J].生物数学学报,1996,11(2):26-30. 被引量:14
  • 3刘南根.具Holling Ⅰ型功能反应的食饵-捕食系统的极限环[J].数学年刊:A辑,1988,9(4):221-227.
  • 4Lotka A.J. Elements of mathemtical biology[ M], Dover, New York, 1965.
  • 5Volltera V. Opere matematiche, Memorie e Note(V) [ M ], Acc. Naz.dei Lincei, Roma, Cremona, 1962.
  • 6Holling C.S.The functional response of predator to prey density and its role in mimicry and population regulation[J], Mere, Ent. Soc. cannada 1965,45,1 - 60.
  • 7Liu X.Xiao D. Complex dynamic behaviors of a discrete- time predator- prey system[J] ,Chaos, Solitioins and Fraetals 2007,32,80 - 94.
  • 8Wiggins S. Introductioin to applied nonlinear dynamical systems and chaos[ M] ,Springer- Verlag,New York,2003.
  • 9[4]Ren Yongtai,Han Li.The predator-prey model with two limit cycles[J].Acta Math Appl Sinica,1989,5(1):30-32.
  • 10[6]Chen Liujuan,Sun Jianhua.On the uniqueness of limit cycle for a class of Holling functional response model[J].Acta Math Sinica,2002,45(2):383-388.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部