期刊文献+

在线自适应LASSO罚向量自回归模型的风电功率预测 被引量:9

An online adaptive LASSO penalty vector autoregressive model for wind power prediction
下载PDF
导出
摘要 针对许多领域中普遍存在的非平稳多元时间序列的建模处理问题,提出了LASSO向量自回归模型的递推在线拟合方法,利用遗忘指数来实现模型的动态变化,并用循环坐标下降算法在线的对向量自回归模型进行系数估计。为证明模型的有效性,将其应用于风电场风电功率的预测,并以传统的向量自回归模型和分层向量自回归模型作为比较基准。根据实验结果表明,在线自适应LASSO向量自回归模型的预测精度高于传统的批量模型,通过系数矩阵图也可以看出,预测风电场临近的风电场对预测点存在一定程度的影响,但自身影响是最大的。将递归在线估计与LASSO向量自回归模型的结合应用于风电功率的预测,对于提高风电功率的预测精度以及改善风电系统工作效率有重要意义。 Aiming at the modeling problem of non-stationary multivariate time series prevalent in many fields,a recursive online fitting method for LASSO vector autoregressive model is proposed.The forgetting index is used to realize the dynamic change of the model,and the cyclic coordinate descent algorithm is used online.The coefficient estimation is performed on the vector autoregressive model.In order to prove the validity of the model,it is applied to the wind power prediction of wind farms,and the traditional vector autoregressive model and hierarchical vector autoregressive model are used as the benchmark.According to the experimental results,the prediction accuracy of the online adaptive LASSO vector autoregressive model based on the coordinate descent algorithm is higher than that of the traditional batch model.It can also be seen from the coefficient matrix diagram that the wind farm adjacent to the wind farm is predicted.The forecast point has a certain degree of influence,but its own impact is the biggest.The application of recursive online estimation and LASSO vector autoregressive model to wind power prediction is of great significance for improving the prediction accuracy of wind power and improving the efficiency of wind power system.
作者 王金甲 彭汝佳 WANG Jinjia;PENG Rujia(Hebei Key Laboratory of Information Transmission and Signal Processing,Yanshan University,Qinhuangdao,Hebei 066004,China;School of Information Science and Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《燕山大学学报》 CAS 北大核心 2018年第6期532-538,551,共8页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61473339 61771420 61501397) 河北省青年拔尖人才计划支持项目([2013]17)
关键词 多元时间序列 风电功率预测 向量自回归模型 遗忘指数 坐标下降法 套索 multivariate time series wind power prediction vector autoregressive forgetting index coordinate descent method LASSO
  • 相关文献

参考文献3

二级参考文献27

  • 1刘春霞,王静,齐义泉,万齐林.基于WRF模式同化QuikSCAT风场资料的初步试验[J].热带海洋学报,2004,23(6):69-74. 被引量:22
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3卢志刚,周凌,杨丽君,冀而康,周旭.基于人工免疫加权支持向量机的电力负荷预测[J].继电器,2005,33(24):42-44. 被引量:4
  • 4肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 5中国风能协会.2011年中国风电装机容量统计[EB/OL].http://www.ewea.org.en/download/displayinfo.asp?id=44,2012-03-23.
  • 6国家能源局.关于印发风电功率预报与电网协调运行实施细则(试行)的通知[R].北京:国家能源局,2012.
  • 7MILLIGAN M ,SCHWARTZ M ,WAN Y. Statistical wind power forecasting rood els: results for U.S. wind farms [A].17th Conference on Probability and Statis- tics in the Atmospheric Sciences [C].Austin: AWEA, 2003.
  • 8BOSSANYI E A. Short-term wind prediction using kalman filters [J].Wind Engineering, 1985, 9 (1) : 1 - 8.
  • 9BEYER H G, T DEGNER, J HAUSMANN, et al. Short term prediction of wind speed and power output of a wind turbine with neural networks [A].European Wind Energy Conference[C].Thessaloniki: EWC, 1994.
  • 10MOHANDES MA, REHMAN S, HALAWANI TO. A neural networks approach for wind speed prediction [J]. Renewable Energy, 1998, 13 (3) : 345-54.

共引文献28

同被引文献63

引证文献9

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部