期刊文献+

K近邻相似度优化的密度峰聚类 被引量:8

Density Peaks Clustering Optimized by K Nearest Neighbor's Similarity
下载PDF
导出
摘要 针对密度峰聚类分配时,仅考虑样本点与指向点(密度比它大的最近点)之间的距离,不适用于流形聚类(如Circleblock数据集、Lineblobs数据集等)的问题,提出了K近邻相似度优化的密度峰聚类算法。在计算每个点的密度与指向点后,通过相似度函数,找出每个点的K近邻,然后根据K近邻信息判断样本点的指向点是否正确,对于指向错误的点重新寻找正确的指向点,可以有效减少错误分配。在人工数据集和UCI数据集上的实验表明,新算法具有更高的准确率。 For the clustering of density peaks, only the distance between the sample point and the point of pointing(the nearest point of density is bigger than it)is considered, and it is not applicable to the problem of manifold clustering(such as Circleblock data set, Lineblobs data set, etc.). A density peak clustering algorithm with K similarity optimization is proposed. After calculating the density and point of each point, find the K neighborhood of each point by the similarity function, and then judge whether the point of the sample point is correct according to the K proximity information.For the point pointing to the wrong point, it can effectively reduce the error distribution. Experiments on artificial datasets and UCI datasets show that the new algorithm has a higher accuracy rate.
作者 朱庆峰 葛洪伟 ZHU Qingfeng;GE Hongwei(Ministry of Education Key Laboratory of Advanced Process Control for Light Industry(Jiangnan University),Wuxi,Jiangsu 214122,China;School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第2期148-153,252,共7页 Computer Engineering and Applications
关键词 聚类 密度峰 相似度 K近邻 clustering density peaks similarity K nearest neighbor
  • 相关文献

参考文献4

二级参考文献56

  • 1李洁,高新波,焦李成.一种基于修正划分模糊度的聚类有效性函数[J].系统工程与电子技术,2005,27(4):723-726. 被引量:8
  • 2张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 3普运伟,金炜东,朱明,胡来招.核模糊C均值算法的聚类有效性研究[J].计算机科学,2007,34(2):207-210. 被引量:28
  • 4王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 5HALKIDI M, VAZIRGIANNIS M, BATISTAKIS Y. Quality scheme assessment in the clustering process [ C ]//Proc of the 4th Eur Conf Principles and Practice of Knowledge Discovery in Databases. 2000: 165-276.
  • 6THEODORIDIS S, KOUTROUBAS K. Pattern recognition[ M]. [S.l. ] :Academic Press, 1999.
  • 7HALKIDI M, BATISTAKIS Y, VAZIRGIANNIS M. On clustering validation techniques [ J ]. Intelligent Information Systems, 2001, 17 (2-3) :107-145.
  • 8HALKIDI M, VAZIRGIANNIS M. Clustering validity assessment using multi representatives[ C]//Proc of SETN Conference. 2002.
  • 9YANG Yan, KAMEL M, JIN Fan. A model of document clustering using ant colony algorithm and validity index [ C ]//Proc of IEEE International Joint Conference on Neural Networks. Montreal: [ s. n. ], 2005 : 2730- 2735.
  • 10RESSOM H, WANG D, NATARAJAN P. Adaptive double self-organizing maps for clustering gene expression profiles [ J ]. Neural Networks ,2003,16(5-6) :633-640.

共引文献255

同被引文献65

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部